cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A119445 Leading diagonal of triangle A119444.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 7, 13, 27, 63, 109, 207, 331, 553, 931, 1531, 2527, 4093, 6673, 10831, 17563, 28561, 46227, 74883, 121219, 196239, 317607, 514047, 831823, 1346041, 2178079, 3524323, 5702619, 9227161, 14930019, 24157471, 39087823, 63245551
Offset: 1

Views

Author

Joshua Zucker, May 20 2006

Keywords

Crossrefs

Cf. A119444 for triangle corresponding to this sequence.
Cf. A100461 for powers of 2, A119446 for primes.

Programs

  • Magma
    function t(n,k) // t = A119444
      if k eq 1 then return Fibonacci(n+1);
      else return (n-k+1)*Floor((t(n,k-1) -1)/(n-k+1));
      end if;
    end function;
    [t(n,n): n in [1..60]]; // G. C. Greubel, Apr 07 2023
    
  • Mathematica
    t[1, n_]:= Fibonacci[n+1];  (* t = A119444 *)
    t[m_, n_]/; 1, ]= 0;
    A119445[n_]:= A119445[n]= t[n,n];
    Table[A119445[n], {n,60}] (* G. C. Greubel, Apr 07 2023 *)
  • SageMath
    def t(n, k): # t = A119444
        if (k==1): return fibonacci(n+1)
        else: return (n-k+1)*((t(n, k-1) -1)//(n-k+1))
    def A119445(n): return t(n,n)
    [A119445(n) for n in range(1,61)] # G. C. Greubel, Apr 07 2023

Formula

a(n) = A119444(n, n).