A119445 Leading diagonal of triangle A119444.
1, 1, 1, 1, 1, 3, 7, 13, 27, 63, 109, 207, 331, 553, 931, 1531, 2527, 4093, 6673, 10831, 17563, 28561, 46227, 74883, 121219, 196239, 317607, 514047, 831823, 1346041, 2178079, 3524323, 5702619, 9227161, 14930019, 24157471, 39087823, 63245551
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Magma
function t(n,k) // t = A119444 if k eq 1 then return Fibonacci(n+1); else return (n-k+1)*Floor((t(n,k-1) -1)/(n-k+1)); end if; end function; [t(n,n): n in [1..60]]; // G. C. Greubel, Apr 07 2023
-
Mathematica
t[1, n_]:= Fibonacci[n+1]; (* t = A119444 *) t[m_, n_]/; 1
, ]= 0; A119445[n_]:= A119445[n]= t[n,n]; Table[A119445[n], {n,60}] (* G. C. Greubel, Apr 07 2023 *) -
SageMath
def t(n, k): # t = A119444 if (k==1): return fibonacci(n+1) else: return (n-k+1)*((t(n, k-1) -1)//(n-k+1)) def A119445(n): return t(n,n) [A119445(n) for n in range(1,61)] # G. C. Greubel, Apr 07 2023
Formula
a(n) = A119444(n, n).