A118687 A triangular array made from polynomial coefficients of A049614.
1, 1, -1, 1, -2, 1, 1, -3, 3, -1, 1, -4, 6, -4, 1, 1, -8, 22, -28, 17, -4, 1, -12, 54, -116, 129, -72, 16, 1, -36, 342, -1412, 2913, -3168, 1744, -384, 1, -60, 1206, -9620, 36801, -73080, 77776, -42240, 9216, 1, -252, 12726, -241172, 1883841, -7138872, 14109136, -14975232, 8119296, -1769472
Offset: 0
Examples
Triangle begins as: 1; 1, -1; 1, -2, 1; 1, -3, 3, -1; 1, -4, 6, -4, 1; 1, -8, 22,-28, 17, -4;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Mathematica
A049614[n_]:= n!/Product[Prime[i], {i, 1, PrimePi[n]}]; Join[{{1}}, Table[CoefficientList[Product[1 - A049614[k]*x, {k, 0, n}], x], {n, 0, 12}]]//Flatten
-
Sage
def A049614(n): return factorial(n)/product( nth_prime(j) for j in (1..prime_pi(n)) ) [1]+flatten([[( product(1 - A049614(k)*x for k in (0..n)) ).series(x,n+2).list()[k] for k in (0..n+1)] for n in (0..12)]) # G. C. Greubel, Feb 05 2021
Formula
T(n, k) = coefficients of Product_{k=0..n} (1 - A049614(k)*x), with T(0, 0) = 1.
Extensions
Edited by G. C. Greubel, Feb 05 2021
Comments