cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A120690 Number of ordered finite sequences a_1 <= a_2 <= ... <= a_n of length n of positive integers less than or equal to n whose product is n!.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 6, 6, 13, 33, 97, 97, 306, 306, 896, 2804, 7974, 7974, 24929, 24929, 82612, 263913, 782310, 782310, 2692708, 7705973, 22901921, 69066986, 232517327, 232517327, 853599455, 853599455, 2737549933, 8929178758, 26621287019, 90741181490, 325528535021, 325528535021
Offset: 0

Views

Author

Martin Fuller, Jun 26 2006

Keywords

Examples

			a(5) = 2 because 5! = 1*2*3*4*5 = 2*2*2*3*5.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = Module[{b}, b[c_, p_, m_] := b[c, p, m] = Module[{x}, If[c <= 0 || m <= 1 || p > m^c, Boole[p == 1], x = IntegerExponent[p, m]; Sum[b[c - i, p/m^i, m - 1], {i, x*Boole@PrimeQ[m], x}]]]; b[n, n!, n]];
    Table[Print[n, " ", a[n]]; a[n], {n, 0, 37}] (* Jean-François Alcover, Jul 05 2022, after Martin Fuller *)
  • PARI
    a(n) = (b(c,p,m) = local(x); if(c<=0||m<=1||p>m^c, p==1, x=valuation(p,m); sum(i=x*isprime(m), x, b(c-i,p/m^i,m-1)))); b(n,n!,n)

Formula

a(p) = a(p-1) for prime p. - Alois P. Heinz, Jul 05 2022

Extensions

a(0)=1 prepended and a(24)-a(37) added by Alois P. Heinz, Jul 05 2022
Showing 1-1 of 1 results.