A119551 Number of ordered finite sequences a_1 <= a_2 <= ... <= a_n of length n of positive integers less than or equal to n whose product is n! and whose sum is n * (n + 1) / 2.
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 6, 6, 22, 22, 60, 159, 377, 377, 1007, 1007, 2867, 8147, 22403, 22403, 67808, 176128, 495053, 1362240, 4210266, 4210266, 14223808, 14223808, 42235255, 129279396, 370630653, 1178215490
Offset: 0
Examples
a(9) = 2 because the sequences (1, 2, 3, 4, 5, 6, 7, 8, 9) and (1, 2, 4, 4, 4, 5, 7, 9, 9) both add up to 45 and multiply up to 9!.
Links
- Martin Fuller, Table of n, a(n) for n = 0..61
Crossrefs
Programs
-
Mathematica
a[n_] := a[n] = Module[{b}, b[c_, s_, p_, m_] := b[c, s, p, m] = Module[{x}, If[c <= 0 || m <= 1 || s <= c || s > m*c, Boole[ c == s && p == 1], x = IntegerExponent[p, m]; Sum[b[c - i, s - m*i, p/m^i, m - 1], {i, x*Boole@PrimeQ[m], x} ]]]; b[n, n*(n + 1)/2, n!, n]]; Table[Print[n, " ", a[n]]; a[n], {n, 1, 32}] (* Jean-François Alcover, Jul 05 2022, after Martin Fuller *)
-
PARI
a(n) = (b(c,s,p,m) = local(x); if(c<=0||m<=1||s<=c||s>m*c, c==s&&p==1, x=valuation(p,m); sum(i=x*isprime(m), x, b(c-i,s-m*i,p/m^i,m-1)))); b(n,n*(n+1)/2,n!,n) \\ Martin Fuller, Jun 26 2006
Formula
a(p) = a(p-1) for prime p. - Alois P. Heinz, Jul 05 2022
Extensions
a(18) and a(19) from John W. Layman, Jun 08 2006
More terms from Martin Fuller, Jun 26 2006
a(0)=1 prepended by Alois P. Heinz, Jul 05 2022
a(36)-a(61) from Martin Fuller, Feb 12 2023
Comments