cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A119575 a(n) = binomial(2*n,n)*(n+3)^2/(n+1).

Original entry on oeis.org

9, 16, 50, 180, 686, 2688, 10692, 42900, 173030, 700128, 2838524, 11522056, 46802700, 190182400, 772913160, 3141129780, 12764118870, 51857916000, 210638666700, 855355383960, 3472419702180, 14092569803520, 57176602275000, 231908298827400, 940340123399196, 3811765978738368
Offset: 0

Views

Author

Zerinvary Lajos, May 31 2006

Keywords

Crossrefs

Programs

  • Maple
    [seq (binomial(2*n,n)*(n+3)^2/(n+1),n=0..25)];
  • Mathematica
    a[n_] := Binomial[2*n, n]*(n + 3)^2/(n + 1); Table[a[n], {n, 0, 25}] (* Robert P. P. McKone, Aug 25 2023 *)
  • PARI
    a(n) = binomial(2*n,n)/(n+1)*(n+3)^2 \\ Charles R Greathouse IV, Oct 23 2023

Formula

From Stefano Spezia, Aug 24 2023: (Start)
O.g.f.: (2*(sqrt(1 - 4*x) - 1) + x*(21 - 8*sqrt(1 - 4*x) - 50*x))/(x*(1 - 4*x)^(3/2)).
E.g.f.: exp(2*x)*((9 + 2*x)*BesselI(0, 2*x) + 2*(x - 2)*BesselI(1, 2*x)).
a(n) ~ c*4^n*sqrt(n), where c = A087197. (End)

Extensions

More terms from Stefano Spezia, Aug 24 2023