A119620 Number of partitions of floor(3n/2) into n parts each from {1,2,...,n}.
1, 1, 1, 1, 2, 2, 3, 3, 5, 5, 7, 7, 11, 11, 15, 15, 22, 22, 30, 30, 42, 42, 56, 56, 77, 77, 101, 101, 135, 135, 176, 176, 231, 231, 297, 297, 385, 385, 490, 490, 627, 627, 792, 792, 1002, 1002, 1255, 1255, 1575, 1575, 1958, 1958, 2436, 2436, 3010, 3010, 3718, 3718
Offset: 0
Examples
For n=8, floor(3*n/2) is 12 and there are five partitions of 12 into 8 parts each in the range 1-8 inclusive, namely: {5,1,1,1,1,1,1,1}, {4,2,1,1,1,1,1,1}, {3,3,1,1,1,1,1,1}, {3,2,2,1,1,1,1,1} and {2,2,2,2,1,1,1,1}. Thus a(8)=5. From _Joerg Arndt_, Apr 22 2013: (Start) a(8) = a(9) = 5, counting the following partitions where all parts (except for possibly the first part) are even: 01: [ 2 2 2 2 ] 02: [ 4 2 2 ] 03: [ 4 4 ] 04: [ 6 2 ] 05: [ 8 ] and 01: [ 3 2 2 2 ] 02: [ 5 2 2 ] 03: [ 5 4 ] 04: [ 7 2 ] 05: [ 9 ] (End) G.f. = 1 + x + x^2 + x^3 + 2*x^4 + 2*x^5 + 3*x^6 + 3*x^7 + 5*x^8 + 5*x^9 + 7*x^10 + ...
Crossrefs
Programs
-
Maple
# Using the function EULER from Transforms (see link at the bottom of the page). [1, op(EULER([1,0,seq(irem(n,2),n=2..55)]))]; # Peter Luschny, Aug 19 2020
-
Mathematica
(* first do *) Needs["DiscreteMath`Combinatorica`"] (* then *) f[n_] := f[n] = Length@ Select[ Partitions[ Floor[3n/2], n], Length@# == n &]; Table[ If[n > 1, f[2Floor[n/2]], f[n]], {n, 57}] (* Robert G. Wilson v, Jun 09 2006 *) Table[ PartitionsP[ Floor[n/2]], {n, 57}] (* Robert G. Wilson v, Jun 09 2006 *) Table[Count[IntegerPartitions[n], p_ /; MemberQ[p, Ceiling[n/2]]], {n, 50}] (* Clark Kimberling, Feb 28 2014 *) a[ n_] := SeriesCoefficient[ (1 + x) / QPochhammer[x^2], {x, 0, n}]; (* Michael Somos, Mar 01 2014 *)
-
PARI
a(n)=numbpart(n\2); \\ Joerg Arndt, Apr 22 2013
Formula
a(n) = A000041(floor(n/2)). - Vladeta Jovovic, Jun 10 2006
G.f.: (Sum_{n>=0} x^(4*n) / Product_{k=1..n} (1-x^(2*k))) / (1 - x). - Michael Somos, Mar 01 2014 [corrected by Jason Yuen, Jan 24 2025]
Extensions
More terms from Robert G. Wilson v, Jun 09 2006
Added a(0)=1. - Michael Somos, Mar 01 2014
Comments