cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A119673 T(n, k) = 3*T(n-1, k-1) + T(n-1, k) for k < n and T(n, n) = 1, T(n, k) = 0, if k < 0 or k > n; triangle read by rows.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 7, 13, 1, 1, 10, 34, 40, 1, 1, 13, 64, 142, 121, 1, 1, 16, 103, 334, 547, 364, 1, 1, 19, 151, 643, 1549, 2005, 1093, 1, 1, 22, 208, 1096, 3478, 6652, 7108, 3280, 1, 1, 25, 274, 1720, 6766, 17086, 27064, 24604, 9841, 1, 1, 28, 349, 2542, 11926, 37384, 78322, 105796, 83653, 29524, 1
Offset: 0

Views

Author

Zerinvary Lajos, Jun 11 2006

Keywords

Examples

			Triangle begins:
  1;
  1,  1;
  1,  4,   1;
  1,  7,  13,    1;
  1, 10,  34,   40,    1;
  1, 13,  64,  142,  121,     1;
  1, 16, 103,  334,  547,   364,     1;
  1, 19, 151,  643, 1549,  2005,  1093,     1;
  1, 22, 208, 1096, 3478,  6652,  7108,  3280,    1;
  1, 25, 274, 1720, 6766, 17086, 27064, 24604, 9841, 1;
		

Crossrefs

Programs

  • Magma
    function T(n,k)
      if k lt 0 or k gt n then return 0;
      elif k eq n then return 1;
      else return 3*T(n-1,k-1) + T(n-1,k);
      end if;
      return T;
    end function;
    [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Nov 18 2019
    
  • Maple
    T := (n,k,m) -> (1-m)^(-n+k)-m^(k+1)*pochhammer(n-k,k+1)* hypergeom([1,n+1],[k+2],m)/(k+1)!; A119673 := (n,k) -> T(n,k,3);
    seq(print(seq(round(evalf(A119673(n,k))),k=0..n)),n=0..10); # Peter Luschny, Jul 25 2014
  • Mathematica
    T[, 0]=1; T[n, n_]=1; T[n_, k_]/; 0, ] = 0;
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] (* Jean-François Alcover, Jun 13 2019 *)
  • PARI
    T(n,k) = if(k<0 || k>n, 0, if(k==n, 1, 3*T(n-1, k-1) +T(n-1,k)));
    for(n=0,12, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Nov 18 2019
    
  • Sage
    @CachedFunction
    def T(n, k):
        if (k<0 or k>n): return 0
        elif (k==n): return 1
        else: return 3*T(n-1, k-1) + T(n-1, k)
    [[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Nov 18 2019

Formula

T(n,k) = R(n,k,3) where R(n,k,m) = (1-m)^(-n+k)-m^(k+1)*Pochhammer(n-k, k+1)* hyper2F1([1,n+1],[k+2],m)/(k+1)!. - Peter Luschny, Jul 25 2014

Extensions

Definition clarified by Philippe Deléham, Jun 13 2006
Entry revised by N. J. A. Sloane, Jun 19 2006