A119686 Numerator of Sum_{k=1..n} 1/(prime(k) - 1)^2.
1, 5, 21, 193, 4861, 2443, 78401, 707209, 85701889, 4203312961, 841345613, 841819933, 4211020661, 4212763061, 2229320057669, 376856710434461, 317005189060740101, 317069381268836117, 317122432680485717
Offset: 1
Examples
The first few fractions are 1, 5/4, 21/16, 193/144, 4861/3600, 2443/1800, 78401/57600, 707209/518400, ... = A119686/A334746.
Links
- Eric Weisstein's World of Mathematics, Prime Sums.
Programs
-
Mathematica
(* First program *) Numerator[Table[Sum[1/(Prime[i]-1)^2,{i,1, n}], {n,1,30}]] (* Second program *) Numerator[Accumulate[1/(Prime[Range[20]]-1)^2]] (* Harvey P. Dale, Jun 28 2017 *)
-
PARI
a(n)=numerator(sum(k=1,n,1/(prime(k)-1)^2)) \\ Charles R Greathouse IV, Apr 24 2015
Formula
a(n) = numerator(Sum_{k=1..n} 1/(Prime(k) - 1)^2).
Comments