A119727 Triangular array: T(n,k) = T(n,n) = 1, T(n,k) = 5*T(n-1, k-1) + 2*T(n-1, k), read by rows.
1, 1, 1, 1, 7, 1, 1, 19, 37, 1, 1, 43, 169, 187, 1, 1, 91, 553, 1219, 937, 1, 1, 187, 1561, 5203, 7969, 4687, 1, 1, 379, 4057, 18211, 41953, 49219, 23437, 1, 1, 763, 10009, 56707, 174961, 308203, 292969, 117187, 1, 1, 1531, 23833, 163459, 633457, 1491211, 2126953, 1699219, 585937, 1
Offset: 1
Examples
Triangle begins as: 1; 1, 1; 1, 7, 1; 1, 19, 37, 1; 1, 43, 169, 187, 1; 1, 91, 553, 1219, 937, 1; 1, 187, 1561, 5203, 7969, 4687, 1; 1, 379, 4057, 18211, 41953, 49219, 23437, 1; 1, 763, 10009, 56707, 174961, 308203, 292969, 117187, 1; 1, 1531, 23833, 163459, 633457, 1491211, 2126953, 1699219, 585937, 1;
References
- TERMESZET VILAGA XI.TERMESZET-TUDOMANY DIAKPALYAZAT 133.EVF. 6.SZ. jun. 2002. Vegh Lea (and Vegh Erika): "Pascal-tipusu haromszogek" http://www.kfki.hu/chemonet/TermVil/tv2002/tv0206/tartalom.html
Links
- G. C. Greubel, Rows n = 1..100 of triangle, flattened
Programs
-
Magma
function T(n,k) if k eq 1 or k eq n then return 1; else return 5*T(n-1,k-1) + 2*T(n-1,k); end if; return T; end function; [T(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Nov 18 2019
-
Maple
T:= proc(n, k) option remember; if k=1 and k=n then 1 else 5*T(n-1, k-1) + 2*T(n-1, k) fi end: seq(seq(T(n, k), k=1..n), n=1..12); # G. C. Greubel, Nov 18 2019
-
Mathematica
T[n_, k_]:= T[n, k]= If[k==1 || k==n, 1, 5*T[n-1, k-1] + 2*T[n-1, k]]; Table[T[n,k], {n,10}, {k,n}]//Flatten (* G. C. Greubel, Nov 18 2019 *)
-
PARI
T(n,k) = if(k==1 || k==n, 1, 5*T(n-1,k-1) + 2*T(n-1,k)); \\ G. C. Greubel, Nov 18 2019
-
Sage
@CachedFunction def T(n, k): if (k==1 or k==n): return 1 else: return 5*T(n-1, k-1) + 2*T(n-1, k) [[T(n, k) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Nov 18 2019
Extensions
Edited by Don Reble, Jul 24 2006
Comments