A119730 Primes p such that p+1, p+2, p+3, p+4 and p+5 have equal number of divisors.
13781, 19141, 21493, 50581, 142453, 152629, 253013, 298693, 307253, 346501, 507781, 543061, 845381, 1079093, 1273781, 1354501, 1386901, 1492069, 1546261, 1661333, 1665061, 1841141, 2192933, 2208517, 2436341, 2453141, 2545013
Offset: 1
Keywords
Examples
13781 is a term since 13782, 13783, 13784, 13785 and 13786 all have 8 divisors: {1,2,3,6,2297,4594,6891,13782}, {1,7,11,77,179,1253,1969,13783}, {1,2,4,8,1723,3446,6892,13784}, {1,3,5,15,919,2757,4595,13785} and {1,2,61,113,122,226,6893,13786}.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Select[Prime@Range[1000000],DivisorSigma[0,#+1]==DivisorSigma[0,#+2]==DivisorSigma[0,#+3]==DivisorSigma[0,#+4]==DivisorSigma[0,#+5]&] endQ[n_]:= Length[Union[DivisorSigma[0, (n + Range[5])]]]==1; Select[Prime[ Range[ 200000]],endQ] (* Harvey P. Dale, Jan 16 2019 *)