A119752 a(1)=2; a(n)=first even number greater than a(n-1) such that a(i)+a(n)+1 is prime for all i=1,2,...,n.
2, 8, 14, 44, 224, 638, 1274, 4004, 675404, 2203958, 3075158, 6195234164, 77989711184, 4566262987328
Offset: 1
Crossrefs
Cf. A119751.
Programs
-
Maple
R:= [2]: count:= 1: for k from 4 by 2 while count < 11 do if isprime(2*k+1) and andmap(isprime, [seq(R[i]+k+1,i=1..count)]) then R:= [op(R),k]; count:= count+1 fi od: R; # Robert Israel, Mar 06 2023
-
Mathematica
Table[If[n == 1, a[1] = 2, j = a[n - 1] + 2; While[a[n] = j; ! AllTrue[Table[a[i] + a[n] + 1, {i, 1, n}], PrimeQ], j += 2]; j] , {n, 1, 9}] (* Robert Price, Apr 03 2019 *)
-
PARI
isok(va, k, n) = if (isprime(2*k+1), for (i=1, n-1, if (! isprime(va[i]+k+1), return(0))); return(1)); lista(nn) = my(va=vector(nn)); va[1]=2; for (n=2, nn, my(k=va[n-1]+2); while (!isok(va, k, n), k+=2); va[n] = k); va; \\ Michel Marcus, Mar 06 2023
Extensions
a(13)-a(14) from Donovan Johnson, Mar 23 2008