cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A119766 Numbers n such that numerator of Bernoulli(n)/n is (apart from sign) 1 or a prime.

Original entry on oeis.org

1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 26, 34, 36, 38, 42, 74, 114, 118, 396, 674, 1870, 4306, 22808
Offset: 1

Views

Author

N. J. A. Sloane, Jun 19 2006

Keywords

Comments

In 1911 Ramanujan believed that the numerator of Bernoulli(n)/n for n even was (apart from sign) always either 1 or a prime. This is false.

Examples

			As an example, Bernoulli(20)/20 = -174611/6600, but 174611 = 283*617. - _Robert G. Wilson v_, Jun 22 2006
		

References

  • S. Ramanujan, Some properties of Bernoulli's numbers, J. Indian Math. Soc., 3 (1911), 219-234.

Crossrefs

Programs

  • Maple
    A119766 := proc(nmax) local numr; for n from 2 to nmax by 2 do numr := abs(numer(bernoulli(n)/n)) ; if numr = 1 or isprime(numr) then print(n) ; fi ; od ; end : A119766(2000) ; # R. J. Mathar, Jun 21 2006
  • Mathematica
    OldPrimeQ[n_] := Abs[n]==1 || PrimeQ[Abs[n]]; Select[Range[2000], OldPrimeQ[Numerator[BernoulliB[ # ]/# ]] &] (* T. D. Noe, Jun 20 2006 *)

Extensions

a(21) and a(22) from T. D. Noe, Jun 20 2006