A001067 Numerator of Bernoulli(2*n)/(2*n).
1, -1, 1, -1, 1, -691, 1, -3617, 43867, -174611, 77683, -236364091, 657931, -3392780147, 1723168255201, -7709321041217, 151628697551, -26315271553053477373, 154210205991661, -261082718496449122051, 1520097643918070802691, -2530297234481911294093
Offset: 1
Examples
The sequence Bernoulli(2*n)/(2*n) (n >= 1) begins 1/12, -1/120, 1/252, -1/240, 1/132, -691/32760, 1/12, -3617/8160, ... The sequence of modified Bernoulli numbers begins 1/48, -1/5760, 1/362880, -1/19353600, 1/958003200, -691/31384184832000, ...
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 259, (6.3.18) and (6.3.19); also p. 810.
- L. V. Ahlfors, Complex Analysis, McGraw-Hill, 1979, p. 205
- R. C. Gunning, Lectures on Modular Forms. Princeton Univ. Press, Princeton, NJ, 1962, p. 53.
- R. Kanigel, The Man Who Knew Infinity, pp. 91-92.
- J. W. Milnor and J. D. Stasheff, Characteristic Classes, Princeton, 1974, p. 285.
- J.-P. Serre, A Course in Arithmetic, Springer-Verlag, 1973, p. 93.
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..314 (first 100 terms from T. D. Noe)
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math.Series 55, Tenth Printing, 1972, p. 259, (6.3.18) and (6.3.19).
- D. Bar-Natan, T. T. Q. Le and D. P. Thurston, Two applications of elementary knot theory to Lie algebras and Vassiliev invariants, arXiv:math/0204311 [math.QA], 2002-2003; Geometry and Topology 7-1 (2003) 1-31.
- G. Everest, A. J. van der Poorten, Y. Puri and T. Ward, Integer Sequences and Periodic Points, Journal of Integer Sequences, Vol. 5 (2002), Article 02.2.3.
- E. Z. Goren, Tables of values of Riemann zeta functions
- Milan Janjic, Hessenberg Matrices and Integer Sequences, J. Int. Seq. 13 (2010) # 10.7.8, section 3.
- J. Sondow and E. W. Weisstein, MathWorld: Riemann Zeta Function
- Eric Weisstein's World of Mathematics, Eisenstein Series.
- Eric Weisstein's World of Mathematics, Bernoulli Number.
- Wikipedia, Kummer-Vandiver conjecture
- Index entries for sequences related to Bernoulli numbers
Crossrefs
Programs
-
GAP
List([1..25], n-> NumeratorRat(Bernoulli(2*n)/(2*n))); # G. C. Greubel, Sep 19 2019
-
Magma
[Numerator(Bernoulli(2*n)/(2*n)):n in [1..40]]; // Vincenzo Librandi, Sep 17 2015
-
Maple
A001067_list := proc(n) 1/(1-1/exp(z)); series(%,z,2*n+4); seq(numer((2*i+1)!*coeff(%,z,2*i+1)),i=0..n) end: A001067_list(21); # Peter Luschny, Jul 12 2012
-
Mathematica
Table[ Numerator[ BernoulliB[2n]/(2n)], {n, 1, 22}] (* Robert G. Wilson v, Feb 03 2004 *)
-
PARI
{a(n) = if( n<1, 0, numerator( bernfrac(2*n) / (2*n)))}; /* Michael Somos, Feb 01 2004 */
-
Sage
@CachedFunction def S(n, k) : if k == 0 : if n == 0 : return 1 else: return 0 return S(n, k-1) + S(n-1, n-k) def BernoulliDivN(n) : if n == 0 : return 1 return (-1)^n*S(2*n-1,2*n-1)/(4^n-16^n) [BernoulliDivN(n).numerator() for n in (1..22)] # Peter Luschny, Jul 08 2012
-
Sage
[numerator(bernoulli(2*n)/(2*n)) for n in (1..25)] # G. C. Greubel, Sep 19 2019
Formula
Zeta(1-2*n) = - Bernoulli(2*n)/(2*n).
G.f.: numerators of coefficients of z^(2*n) in z/(exp(z)-1). - Benoit Cloitre, Jun 02 2003
For 2 <= k <= 1000 and k != 7, the 2-order of the full constant term of E_k/Delta = 3 + ord_2(k - 7). - Barry Brent (barrybrent(AT)iphouse.com), Jun 01 2009
G.f. for Bernoulli(2*n)/(2*n) = a(n)/A006953(n): (-1)^n/((2*Pi)^(2*n)*(2*n))*integral(log(1-1/t)^(2*n) dt,t=0,1). - Gerry Martens, May 18 2011
E.g.f.: a(n) = numerator((2*n+1)!*[x^(2*n+1)](1/(1-1/exp(x)))). - Peter Luschny, Jul 12 2012
|a(n)| = numerator of Integral_{r=0..1} HurwitzZeta(1-n, r)^2 dr. More general: |Bernoulli(2*n)| = binomial(2*n,n)*n^2*I(n) for n >= 1 where I(n) denotes the integral. - Peter Luschny, May 24 2015
Comments