cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 40 results. Next

A300711 a(n) = A000367(n)/A001067(n).

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 7, 1, 1, 1, 11, 1, 13, 7, 5, 1, 17, 1, 19, 1, 1, 11, 23, 1, 25, 13, 1, 7, 29, 1, 31, 1, 11, 17, 35, 1, 37, 19, 13, 1, 41, 1, 43, 11, 5, 23, 47, 1, 49, 1, 17, 13, 53, 1, 5, 7, 19, 29, 59, 1, 61, 31, 1, 1, 65, 11, 67, 17, 23, 7, 71, 1, 73, 37
Offset: 1

Views

Author

Bernd C. Kellner, Mar 11 2018

Keywords

Comments

a(n) is the trivial factor of the numerator of Bernoulli(2n) that divides 2n.
The remaining part of the (unsigned) numerator equals a product of powers of irregular primes, or 1 if and only if n = 1, 2, 3, 4, 5, 7.
Alternatively, a(n) is the product over all prime powers p^e, where p^e is the highest power of p dividing 2n and p-1 does not divide 2n.

Examples

			a(5) = 5, since Bernoulli(10) = 5/66 and Bernoulli(10)/10 = 1/132.
		

Crossrefs

A111008 equals the first entries and slightly differs, see a(35).

Programs

  • Julia
    using Nemo
    function A300711(n)
        b = bernoulli(n)
        div(numerator(b), numerator(b*QQ(1,n)))
    end
    [A300711(n) for n in 2:2:148] |> println # Peter Luschny, Mar 11 2018
    
  • Maple
    A300711 := proc(n) local P, F, f, divides; divides := (a,b) -> is(irem(b,a) = 0):
    P := 1; F := ifactors(2*n)[2]; for f in F do if not divides(f[1]-1, 2*n) then
    P := P*f[1]^f[2] fi od; P end: seq(A300711(n), n=1..74); # Peter Luschny, Mar 12 2018
  • Mathematica
    Table[Numerator[BernoulliB[n]]/Numerator[BernoulliB[n]/n], {n, 2, 100, 2}]
  • PARI
    a(n) = gcd(numerator(bernfrac(2*n)), 2*n) \\ Jianing Song, Apr 05 2021
    
  • PARI
    upto(N)=bernvec(N);forstep(n=2,2*N,2,print1(gcd(numerator(bernfrac(n)), n),", ")) \\ Jeppe Stig Nielsen, Jun 22 2023

Formula

a(n) = numerator(Bernoulli(2n))/numerator(Bernoulli(2n)/(2n)).
a(n) * A195989(n) = n. - Peter Luschny, Mar 12 2018
From Jianing Song, Apr 05 2021: (Start)
a(n) = gcd(numerator(Bernoulli(2n)), 2n).
a(n) = A002445(n)*(2n)/A075180(2n-1). (End)

A033563 Primes in A001067.

Original entry on oeis.org

691, 3617, 43867, 657931, 151628697551, 26315271553053477373, 154210205991661, 1520097643918070802691, 923038305114085622008920911661422572613197507651
Offset: 1

Views

Author

Keywords

Comments

All primes in this sequence are irregular primes. The next term, corresponding to Bernoulli(114), is too large to include. See A112548 for indices 2n that yield primes. - T. D. Noe, Sep 28 2005

Programs

  • Mathematica
    Select[Table[Abs[Numerator[BernoulliB[2n]/2/n]], {n, 100}], PrimeQ] (Noe)

Extensions

More terms from T. D. Noe, Sep 28 2005

A281331 Smallest prime factor of |A001067(n)|, or 1 if |A001067(n)| = 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 691, 1, 3617, 43867, 283, 131, 103, 657931, 9349, 1721, 37, 151628697551, 26315271553053477373, 154210205991661, 137616929, 1520097643918070802691, 59, 383799511, 653, 417202699, 577, 39409, 113161, 67, 2003, 157, 1226592271, 839, 37, 688531, 3112655297839
Offset: 1

Views

Author

Seiichi Manyama, Jan 20 2017

Keywords

Examples

			|A001067(10)| = 174611 = 283*617. So a(10) = 283.
|A001067(16)| = 7709321041217 = 37*683*305065927. So a(16) = 37.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := FactorInteger[Abs[Numerator[BernoulliB[2*n] / (2*n)]]][[1, 1]]; Table[a[n], {n, 1, 36}] (* Indranil Ghosh, Mar 12 2017 *)
  • PARI
    a(n) = my(num = abs(numerator(bernfrac(2*n)/(2*n)))); if (num==1, 1, factor(num)[1,1]); \\ Michel Marcus, Jan 21 2017

Formula

a(n) = A020639(|A001067(n)|).
If n = A112548(m)/2, a(n) = |A001067(n)|.
a(18*m-2) = 37 for m > 0.

Extensions

More terms from Michel Marcus, Jan 21 2017

A281332 Greatest prime factor of |A001067(n)|, or 1 if |A001067(n)| = 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 691, 1, 3617, 43867, 617, 593, 2294797, 657931, 362903, 1001259881, 305065927, 151628697551, 26315271553053477373, 154210205991661, 1897170067619, 1520097643918070802691, 1798482437, 67568238839737, 153289748932447906241, 47464429777438199
Offset: 1

Views

Author

Seiichi Manyama, Jan 20 2017

Keywords

Examples

			|A001067(10)| = 174611 = 283*617. So a(10) = 617.
|A001067(16)| = 7709321041217 = 37*683*305065927. So a(16) = 305065927.
		

Crossrefs

Programs

  • Mathematica
    Table[FactorInteger[Abs@ Numerator[BernoulliB[2 n]/(2 n)]][[-1, 1]], {n, 25}] (* Michael De Vlieger, Jan 21 2017 *)
  • PARI
    a(n) = if(abs(numerator(bernfrac(2*n) / (2*n))) == 1, 1, vecmax(factor(abs(numerator(bernfrac(2*n) / (2*n))))[,1]));
    for(n=1, 25, print1(a(n), ", ")) \\ Indranil Ghosh, Mar 11 2017

Formula

a(n) = A006530(|A001067(n)|).
If n = A112548(m)/2, a(n) = |A001067(n)|.

Extensions

a(20)-a(25) from Michael De Vlieger, Jan 21 2017

A060309 A001067 appears to count the periodic points for a certain map. If so, then this is the sequence of the numbers of orbits of length n.

Original entry on oeis.org

1, 0, 0, 0, 0, 115, 0, 452, 4874, 17461, 7062, 19696950, 50610, 242341439, 114877883680, 481832564850, 8919335150, 1461959530725195586, 8116326631140, 13054135924822447372, 72385602091336704890, 115013510658268698717, 1127506827209663824722
Offset: 1

Views

Author

Thomas Ward, Apr 10 2001

Keywords

Examples

			a(11) = 7062 because the 11th term of A001067 is 77683 and the first term is 1, so there should be (77683-1)/11 = 7062 orbits of length 11.
		

Crossrefs

Formula

If b(n) is the n-th term of A001067, then a(n)=(1/n)* |Sum_{d|n}mu(d)b(n/d)|, n<>2.

Extensions

a(18) corrected and more terms from Sean A. Irvine, Nov 08 2022

A006953 a(n) = denominator of Bernoulli(2n)/(2n).

Original entry on oeis.org

12, 120, 252, 240, 132, 32760, 12, 8160, 14364, 6600, 276, 65520, 12, 3480, 85932, 16320, 12, 69090840, 12, 541200, 75852, 2760, 564, 2227680, 132, 6360, 43092, 6960, 708, 3407203800, 12, 32640, 388332, 120, 9372, 10087262640
Offset: 1

Views

Author

Keywords

Comments

a(n) are alternately divisible by 12 and 120, a(n)/(12, 120, 12, 120, 12, 120, ...) = 1, 1, 21, 2, 11, 273, ... . - Paul Curtz, Sep 13 2011 and Michel Marcus, Jan 05 2013
A141590/(2 before a(n+1)) = 1/2 + 1/12 - 1/120 + 1/252 is an old semi-convergent series for Euler's constants A001620 ("2 before a" meaning that one term, namely 2, is inserted before the sequence). This series is discussed in details in reference [Blagouchine, 2016], Sect. 3 and Fig. 3. - Paul Curtz, Sep 13 2011, Michel Marcus, Jan 05 2013 and Iaroslav V. Blagouchine, Sep 16 2015
a(n) = A006863(n)/2. - Michel Marcus, Jan 05 2013

Examples

			Sequence Bernoulli(2n)/(2n) (n >= 1) begins 1/12, -1/120, 1/252, -1/240, 1/132, -691/32760, 1/12, -3617/8160, ... .
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 259, (6.3.18) and (6.3.19); also p. 810.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Numerators are given by A001067.

Programs

  • GAP
    List([1..40], n-> DenominatorRat(Bernoulli(2*n)/(2*n)) ); # G. C. Greubel, Sep 19 2019
  • Magma
    [Denominator(Bernoulli(2*n)/(2*n)):n in [1..40]]; // Vincenzo Librandi, Sep 17 2015
    
  • Maple
    A006953_list := proc(n) 1/(1-1/exp(z)); series(%,z,2*n+4);
    seq(denom((-1)^i*(2*i+1)!*coeff(%,z,2*i+1)),i=0..n) end;
    A006953_list(35); # Peter Luschny, Jul 12 2012
  • Mathematica
    Table[Denominator[BernoulliB[2n]/(2n)],{n,40}] (* Harvey P. Dale, Jan 12 2022 *)
  • PARI
    a(n) = denominator(bernfrac(2*n)/(2*n)); \\ Michel Marcus, Apr 21 2016
    
  • Sage
    [denominator(bernoulli(2*n)/(2*n)) for n in (1..40)] # G. C. Greubel, Sep 19 2019
    

Formula

Zeta(1-2*n) = -Bernoulli(2*n)/(2*n).
G.f. for Bernoulli(2*n)/(2*n) = A001067(n)/A006953(n): (-1)^n/((2*Pi)^(2*n)*(2*n)) * Integral_{t=0..1} log(1-1/t)^(2*n) dt. - Gerry Martens, May 18 2011
E.g.f.: a(n) = denominator((2*n+1)!*[x^(2*n+1)](1/(1-1/exp(x)))). - Peter Luschny, Jul 12 2012

Extensions

Previous Mathematica program replaced by Harvey P. Dale, Jan 12 2022

A006863 Denominator of B_{2n}/(-4n), where B_m are the Bernoulli numbers.

Original entry on oeis.org

1, 24, 240, 504, 480, 264, 65520, 24, 16320, 28728, 13200, 552, 131040, 24, 6960, 171864, 32640, 24, 138181680, 24, 1082400, 151704, 5520, 1128, 4455360, 264, 12720, 86184, 13920, 1416, 6814407600, 24
Offset: 0

Views

Author

Keywords

Comments

Carmichael defines lambda(n) to be the exponent of the group U(n) of units of the integers mod n. He shows that given m there is a number lambda^*(m) such that lambda(n) divides m if and only if n divides lambda^*(m). He gives a formula for lambda^*(m), equivalent to the one I've quoted for even m. (We have lambda^*(m)=2 for any odd m.) The present sequence gives the values of lambda^*(2m) for positive integers m. - Peter J. Cameron, Mar 25 2002
(-1)^n*B_{2n}/(-4n) = Integral_{t>=0} t^(2n-1)/(exp(2*Pi*t) - 1)dt. - Benoit Cloitre, Apr 04 2002
Michael Lugo (see link) conjectures, and Peter McNamara proves, that a(n) = gcd_{ primes p > 2n+1 } (p^(2n) - 1). - Tanya Khovanova, Feb 21 2009 [edited by Charles R Greathouse IV, Dec 03 2014]

References

  • Bruce Berndt, Ramanujan's Notebooks Part II, Springer-Verlag; see Integrals and Asymptotic Expansions, p. 220.
  • F. Hirzebruch et al., Manifolds and Modular Forms, Vieweg, 2nd ed. 1994, p. 130.
  • J. W. Milnor and J. D. Stasheff, Characteristic Classes, Princeton, 1974, p. 286.
  • Douglas C. Ravenel, Complex cobordism theory for number theorists, Lecture Notes in Mathematics, 1326, Springer-Verlag, Berlin-New York, 1988, pp. 123-133.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. C. Vaughan and T. D. Wooley, Waring's problem: a survey, pp. 285-324 of Surveys in Number Theory (Urbana, May 21, 2000), ed. M. A. Bennett et al., Peters, 2003. (The function K(2n), see p. 303.)

Crossrefs

Numerators are A001067.

Programs

  • GAP
    Concatenation([1], List([1..35], n-> DenominatorRat(Bernoulli(2*n)/(-4*n)) )); # G. C. Greubel, Sep 19 2019
  • Magma
    [1] cat [Denominator(Bernoulli(2*n)/(-4*n)):n in [1..35]]; // G. C. Greubel, Sep 19 2019
    
  • Maple
    1,seq(denom(bernoulli(2*n)/(-4*n)), n=1 .. 100); # Robert Israel, Dec 03 2014
  • Mathematica
    a[n_] := Denominator[BernoulliB[2n]/(-4n)]; Table[a[n], {n, 0, 31}] (* Jean-François Alcover, Mar 20 2011 *)
  • PARI
    a(n) = if (n == 0, 1, denominator(bernfrac(2*n)/(-4*n))); \\ Michel Marcus, Sep 10 2013
    
  • Sage
    [1]+[denominator(bernoulli(2*n)/(-4*n)) for n in (1..35)] # G. C. Greubel, Sep 19 2019
    

Formula

B_{2k}/(4k) = -(1/2)*zeta(1-2k). For n > 0, a(n) = gcd k^L (k^{2n}-1) where k ranges over all the integers and L is as large as necessary.
Product of 2^{a+2} (where 2^a exactly divides 2*n) and p^{a+1} (where p is an odd prime such that p-1 divides 2*n and p^a exactly divides 2*n). - Peter J. Cameron, Mar 25 2002

Extensions

Thanks to Michael Somos for helpful comments.

A262235 Denominators of a series leading to Euler's constant gamma.

Original entry on oeis.org

4, 72, 32, 14400, 1728, 2540160, 138240, 261273600, 896000, 10538035200, 209018880, 407994402816000, 5633058816000, 941525544960000, 4723310592, 8707228239790080000, 6162712657920000, 17473102222724628480000, 107559878256230400000, 14162409169997856768000000
Offset: 1

Views

Author

Keywords

Comments

Gamma = 1 - 1/4 - 5/72 - 1/32 - 251/14400 - 19/1728 - 19087/2540160 - ..., see the references below.

Examples

			Denominators of 1/4, 5/72, 1/32, 251/14400, 19/1728, 19087/2540160, ...
		

Crossrefs

Programs

  • Maple
    a := proc(n) local r; r := proc(n) option remember; if n=0 then 1 else
    1 - add(r(k)/(n-k+1), k=0..n-1) fi end: denom(r(n)/(n*(n+1))) end:
    seq(a(n), n=1..20); # Peter Luschny, Apr 19 2018
  • Mathematica
    g[n_] := Sum[Abs[StirlingS1[n, l]]/(l + 1), {l, 1, n}]/(n*(n + 1)!); a[n_] := Denominator[g[n]]; Table[a[n], {n, 1, 20}]

Formula

a(n) = C2(n)/(n*(n + 1)!), where C2(n) are Cauchy numbers of the second kind (see A002657 and A002790).

A090495 Numbers k such that numerator(Bernoulli(2*k)/(2*k)) is different from numerator(Bernoulli(2*k)/(2*k*(2*k-1))).

Original entry on oeis.org

574, 1185, 1240, 1269, 1376, 1906, 1910, 2572, 2689, 2980, 3238, 3384, 3801, 3904, 4121, 4570, 4691, 4789, 5236, 5862, 5902, 6227, 6332, 6402, 6438, 6568, 7234, 7900, 8113, 8434, 8543, 8557, 8566, 9232, 9611, 9670, 9824, 9891, 9898, 10564, 10587, 10754, 11230, 11247, 11535, 11691, 11896, 12562, 12965, 13019, 13228, 13246, 13355, 13484, 13894, 14560, 14714, 14957, 15176, 15226, 15346, 15892, 16558, 16668, 16944, 17035, 17224, 17387, 17890, 18379, 18406, 18534, 18556, 18761, 19222, 19598, 19888, 20090
Offset: 1

Views

Author

N. J. A. Sloane, Feb 03 2004

Keywords

Comments

Michael Somos (Feb 01 2004) discovered the remarkable fact that A001067 is different from A046968, even though they agree for the first 573 terms.
Numbers n such that A001067 is different from A046968, or alternatively, those n such that gcd(A001067(n),2n-1) is > 1.
If gcd(A000367(n), A000367(n+2)) <>1 then n = A090495(n) - (3*A090496(n) + 1)/2. - Mohammed Bouayoun (bouyao(AT)wanadoo.fr), Feb 08 2004
So far, all terms correspond to irregular primes. Notice that these numbers are generated by n=((2k+1)p+1)/2 where p is an irregular prime and k is some integer = 1,2,... . In the Excel spreadsheet provided at the link, you will notice that much larger firstborn irregular primes p tend to produce smaller values of k. E.g., p = 691, 683, 653, k = 5, 15, 23. So by some guessing we could test a given large irregular prime for the first few values of k. I found ip's 257, 293, 311 this way, but not the index. Also the spreadsheet shows the corresponding irregular primes where the Bacher forecast fails for firstborn irregular prime. - Cino Hilliard, Feb 15 2004

Crossrefs

Programs

  • Maple
    a := n->numer(bernoulli(2*n)/(2*n)): b := n->numer(bernoulli(2*n)/(2*n*(2*n-1))): for n from 1 to 2000 do if a(n)<>b(n) then print(n,a(n)/b(n)); fi; od:
  • Mathematica
    a[n_] := Numerator[BernoulliB[2n]/(2n)] (* A001067 *); b[n_] := Numerator[BernoulliB[2n]/(2n(2n-1))] (* A046968 *); For[n=1, n <= 580, n++, If[ a[n] != b[n], Print[n, " ", a[n]/b[n]] ] ]
    k = 1; lst = {}; While[k < 38001, b = BernoulliB[2 k]; If [Numerator[b/(2 k)] != Numerator[b/(2 k (2 k - 1))], AppendTo[lst, k]; Print[{k}]]; k++ ]; lst (* Robert G. Wilson v, Aug 19 2010 *)
  • PARI
    bern2(c,m1,m2) = { for(n=m1,m2, n2=n+n; a = numerator(bernfrac(n2)/(n2)); \ A001067 b = numerator(a/(n2-1)); if(a <> b,print("A("c") = "n","a/b);c++) ) } \\ Cino Hilliard

Extensions

a(1)-a(7) from Michael Somos and W. Edwin Clark, Feb 03 2004
a(8)-a(9) from Robert G. Wilson v, Feb 03 2004
a(10)-a(12) from Eric W. Weisstein, Feb 03 2004
a(13)-a(39) from Cino Hilliard, Feb 03 2004
a(40) from Eric W. Weisstein, Feb 04 2004
Many further terms from Cino Hilliard, Feb 15 2004

A046968 Numerators of coefficients in Stirling's expansion for log(Gamma(z)).

Original entry on oeis.org

1, -1, 1, -1, 1, -691, 1, -3617, 43867, -174611, 77683, -236364091, 657931, -3392780147, 1723168255201, -7709321041217, 151628697551, -26315271553053477373, 154210205991661, -261082718496449122051, 1520097643918070802691
Offset: 1

Views

Author

Douglas Stoll (dougstoll(AT)email.msn.com)

Keywords

Comments

A001067(n) = a(n) if n<574; A001067(574) = 37*a(574). - Michael Somos, Feb 01 2004

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 257, Eq. 6.1.41.
  • L. V. Ahlfors, Complex Analysis, McGraw-Hill, 1979, p. 205

Crossrefs

Denominators given by A046969.
Similar to but different from A001067. See A090495, A090496.

Programs

  • GAP
    List([1..25], n-> NumeratorRat(Bernoulli(2*n)/(2*n*(2*n-1))) ); # G. C. Greubel, Sep 19 2019
  • Magma
    [Numerator(Bernoulli(2*n)/(2*n*(2*n-1))): n in [1..25]]; // G. C. Greubel, Sep 19 2019
    
  • Maple
    seq(numer(bernoulli(2*n)/(2*n*(2*n-1))), n = 1..25); # G. C. Greubel, Sep 19 2019
  • Mathematica
    Table[ Numerator[ BernoulliB[2n]/(2n(2n - 1))], {n, 1, 22}] (* Robert G. Wilson v, Feb 03 2004 *)
    s = LogGamma[z] + z - (z - 1/2) Log[z] - Log[2 Pi]/2 + O[z, Infinity]^42; DeleteCases[CoefficientList[s, 1/z], 0] // Numerator (* Jean-François Alcover, Jun 13 2017 *)
  • PARI
    a(n)=if(n<1,0,numerator(bernfrac(2*n)/(2*n)/(2*n-1)))
    
  • Sage
    [numerator(bernoulli(2*n)/(2*n*(2*n-1))) for n in (1..25)] # G. C. Greubel, Sep 19 2019
    

Formula

From numerator of Jk(z) = (-1)^(k-1)*Bk/(((2k)*(2k-1))*z^(2k-1)), so Gamma(z) = sqrt(2*Pi)*z^(z-0.5)*exp(-z)*exp(J(z)).

Extensions

More terms from Frank Ellermann, Jun 13 2001
Showing 1-10 of 40 results. Next