A300711 a(n) = A000367(n)/A001067(n).
1, 1, 1, 1, 5, 1, 7, 1, 1, 1, 11, 1, 13, 7, 5, 1, 17, 1, 19, 1, 1, 11, 23, 1, 25, 13, 1, 7, 29, 1, 31, 1, 11, 17, 35, 1, 37, 19, 13, 1, 41, 1, 43, 11, 5, 23, 47, 1, 49, 1, 17, 13, 53, 1, 5, 7, 19, 29, 59, 1, 61, 31, 1, 1, 65, 11, 67, 17, 23, 7, 71, 1, 73, 37
Offset: 1
Keywords
Examples
a(5) = 5, since Bernoulli(10) = 5/66 and Bernoulli(10)/10 = 1/132.
Links
- Jeppe Stig Nielsen, Table of n, a(n) for n = 1..10000
- Bernd C. Kellner, On irregular prime power divisors of the Bernoulli numbers, Math. Comp. 76 (2007) 405-441.
Crossrefs
Programs
-
Julia
using Nemo function A300711(n) b = bernoulli(n) div(numerator(b), numerator(b*QQ(1,n))) end [A300711(n) for n in 2:2:148] |> println # Peter Luschny, Mar 11 2018
-
Maple
A300711 := proc(n) local P, F, f, divides; divides := (a,b) -> is(irem(b,a) = 0): P := 1; F := ifactors(2*n)[2]; for f in F do if not divides(f[1]-1, 2*n) then P := P*f[1]^f[2] fi od; P end: seq(A300711(n), n=1..74); # Peter Luschny, Mar 12 2018
-
Mathematica
Table[Numerator[BernoulliB[n]]/Numerator[BernoulliB[n]/n], {n, 2, 100, 2}]
-
PARI
a(n) = gcd(numerator(bernfrac(2*n)), 2*n) \\ Jianing Song, Apr 05 2021
-
PARI
upto(N)=bernvec(N);forstep(n=2,2*N,2,print1(gcd(numerator(bernfrac(n)), n),", ")) \\ Jeppe Stig Nielsen, Jun 22 2023
Formula
a(n) = numerator(Bernoulli(2n))/numerator(Bernoulli(2n)/(2n)).
a(n) * A195989(n) = n. - Peter Luschny, Mar 12 2018
From Jianing Song, Apr 05 2021: (Start)
a(n) = gcd(numerator(Bernoulli(2n)), 2n).
Comments