cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A060171 Number of orbits of length n under a map whose periodic points seem to be counted by A006953.

Original entry on oeis.org

12, 54, 80, 30, 24, 5400, 0, 990, 1568, 636, 24, 2720, 0, 240, 5704, 510, 0, 3835776, 0, 26724, 3600, 108, 24, 89760, 0, 240, 1064, 120, 24, 113569300, 0, 510, 11752, 0, 264, 278281640
Offset: 1

Views

Author

Thomas Ward, Mar 13 2001

Keywords

Comments

The sequence A006953 seems to record the number of points of period n under a map. The number of orbits of length n for this map gives the sequence above.

Examples

			u(3) = 80 since a map whose periodic points are counted by A006953 has 12 fixed points and 252 points of period 3, hence 80 orbits of length 3.
		

Crossrefs

Programs

  • PARI
    a(n) = sumdiv(n, d, moebius(d)*denominator(bernfrac(2*n/d)/(2*n/d)))/n; \\ Michel Marcus, Sep 10 2017

Formula

a(n) = (1/n)* Sum_{d|n} mu(d)*A006953(n/d).

A185633 For odd n, a(n) = 2; for even n, a(n) = denominator of Bernoulli(n)/n; The number 2 alternating with the elements of A006953.

Original entry on oeis.org

2, 12, 2, 120, 2, 252, 2, 240, 2, 132, 2, 32760, 2, 12, 2, 8160, 2, 14364, 2, 6600, 2, 276, 2, 65520, 2, 12, 2, 3480, 2, 85932, 2, 16320, 2, 12, 2, 69090840, 2, 12, 2, 541200, 2, 75852, 2, 2760, 2, 564, 2, 2227680, 2, 132, 2, 6360
Offset: 1

Views

Author

Paul Curtz, Dec 18 2012

Keywords

Comments

There is an integer sequence b(n) = A053657(n)/2^(n-1) = 1, 1, 6, 6, 360, 360, 45360, 45360, 5443200, 5443200,... which consists of the duplicated entries of A202367.
The ratios of this sequence are b(n+1)/b(n) = 1, 6, 1, 60, 1, 126 .... = a(n)/2, which is a variant of A036283.

Crossrefs

Cf. A006953, A007395 (bisections).
Cf. A006863, A027760, A067513, A322312, A322315 (rgs-transform).

Programs

  • Maple
    A185633 := proc(n)
        A053657(n+1)/A053657(n) ;
    end proc: # R. J. Mathar, Dec 19 2012
  • Mathematica
    max = 52; s = Expand[Normal[Series[(-Log[1-x]/x)^z, {x, 0, max}]]]; a[n_, k_] := Denominator[Coefficient[s, x^n*z^k]]; A053657 = Prepend[LCM @@@ Table[a[n, k], {n, max}, {k, n}], 1]; a[n_] := A053657[[n+1]]/A053657[[n]]; Table[a[n], {n, 1, max}] (* Jean-François Alcover, Dec 20 2012 *)
  • PARI
    A185633(n) = if(n%2,2,denominator(bernfrac(n)/(n))); \\ Antti Karttunen, Dec 03 2018
    
  • PARI
    A185633(n) = { my(m=1); fordiv(n, d, if(isprime(1+d), m *= (1+d)^(1+valuation(n,1+d)))); (m); }; \\ Antti Karttunen, Dec 03 2018

Formula

a(n) = A053657(n+1)/A053657(n).
a(2*n) = 2*A036283(n).
From Antti Karttunen, Dec 03 2018: (Start)
a(n) = Product_{d|n} [(1+d)^(1+A286561(n,1+d))]^A010051(1+d) - after Peter J. Cameron's Mar 25 2002 comment in A006863.
A007947(a(n)) = A027760(n)
A001221(a(n)) = A067513(n).
A181819(a(n)) = A322312(n).
(End)

Extensions

Name edited by Antti Karttunen, Dec 03 2018

A193267 The number 1 alternating with the numbers A006953/A002445 (which are integers).

Original entry on oeis.org

1, 2, 1, 4, 1, 6, 1, 8, 1, 2, 1, 12, 1, 2, 1, 16, 1, 18, 1, 20, 1, 2, 1, 24, 1, 2, 1, 4, 1, 6, 1, 32, 1, 2, 1, 36, 1, 2, 1, 40, 1, 42, 1, 4, 1, 2, 1, 48, 1, 2, 1, 4, 1, 54, 1, 8, 1, 2, 1, 60, 1, 2, 1, 64, 1, 6, 1, 4, 1, 2, 1, 72, 1, 2, 1, 4, 1, 6, 1, 80, 1, 2, 1, 84, 1, 2, 1, 8, 1, 18, 1, 4, 1, 2, 1, 96, 1, 2, 1, 100
Offset: 1

Views

Author

Paul Curtz, Dec 20 2012

Keywords

Comments

a(n) is the product over all prime powers p^e, where p^e is the highest power of p dividing n and p-1 divides n. - Peter Luschny, Mar 12 2018

Programs

  • Julia
    using Nemo
    function A193267(n) P = 1
        for (p, e) in factor(ZZ(n))
            divisible(ZZ(n), p - 1) && (P *= p^e) end
    P end
    [A193267(n) for n in 1:100] |> println # Peter Luschny, Mar 12 2018
  • Magma
    [Denominator(Bernoulli(n)/n)/Denominator(Bernoulli(n)): n in [1..100]]; // Vincenzo Librandi, Mar 12 2018
    
  • Maple
    with(numtheory); a := proc(n) divisors(n); map(i->i+1, %); select(isprime, %);
    mul(k^padic[ordp](n,k),k=%) end: seq(a(n), n=1..100); # Peter Luschny, Mar 12 2018
    # Alternatively:
    A193267 := proc(n) local P, F, f, divides; divides := (a,b) -> is(irem(b,a) = 0):
    P := 1; F := ifactors(n)[2]; for f in F do if divides(f[1]-1, n) then
    P := P*f[1]^f[2] fi od; P end: seq(A193267(n), n=1..100); # Peter Luschny, Mar 12 2018
  • Mathematica
    a[n_] := If[OddQ[n], 1, Denominator[ BernoulliB[n]/n ] / Denominator[ BernoulliB[n]] ]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Dec 21 2012 *)

Formula

a(n+1) = A185633(n+1)/A027760(n+1).
a(n+1) = c(n+2)/c(n+1).

A001067 Numerator of Bernoulli(2*n)/(2*n).

Original entry on oeis.org

1, -1, 1, -1, 1, -691, 1, -3617, 43867, -174611, 77683, -236364091, 657931, -3392780147, 1723168255201, -7709321041217, 151628697551, -26315271553053477373, 154210205991661, -261082718496449122051, 1520097643918070802691, -2530297234481911294093
Offset: 1

Views

Author

N. J. A. Sloane, Richard E. Borcherds (reb(AT)math.berkeley.edu)

Keywords

Comments

It was incorrectly claimed that a(n) is "also numerator of "modified Bernoulli number" b(2n) = Bernoulli(2*n)/(2*n*n!)"; actually, the numerators of these fractions and the numerators of "modified Bernoulli numbers" (see A057868 for details) differ from each other and from this sequence. - Andrey Zabolotskiy, Dec 03 2022
Ramanujan incorrectly conjectured that the sequence contains only primes (and 1). - Jud McCranie. See A112548, A119766.
a(n) = A046968(n) if n < 574; a(574) = 37 * A046968(574). - Michael Somos, Feb 01 2004
Absolute values give denominators of constant terms of Fourier series of meromorphic modular forms E_k/Delta, where E_k is the normalized k th Eisenstein series [cf. Gunning or Serre references] and Delta is the normalized unique weight-twelve cusp form for the full modular group (the generating function of Ramanujan's tau function.) - Barry Brent (barrybrent(AT)iphouse.com), Jun 01 2009
|a(n)| is a product of powers of irregular primes (A000928), with the exception of n = 1,2,3,4,5,7. - Peter Luschny, Jul 28 2009
Conjecture: If there is a prime p such that 2*n+1 < p and p divides a(n), then p^2 does not divide a(n). This conjecture is true for p < 12 million. - Seiichi Manyama, Jan 21 2017

Examples

			The sequence Bernoulli(2*n)/(2*n) (n >= 1) begins 1/12, -1/120, 1/252, -1/240, 1/132, -691/32760, 1/12, -3617/8160, ...
The sequence of modified Bernoulli numbers begins 1/48, -1/5760, 1/362880, -1/19353600, 1/958003200, -691/31384184832000, ...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 259, (6.3.18) and (6.3.19); also p. 810.
  • L. V. Ahlfors, Complex Analysis, McGraw-Hill, 1979, p. 205
  • R. C. Gunning, Lectures on Modular Forms. Princeton Univ. Press, Princeton, NJ, 1962, p. 53.
  • R. Kanigel, The Man Who Knew Infinity, pp. 91-92.
  • J. W. Milnor and J. D. Stasheff, Characteristic Classes, Princeton, 1974, p. 285.
  • J.-P. Serre, A Course in Arithmetic, Springer-Verlag, 1973, p. 93.

Crossrefs

Similar to but different from A046968. See A090495, A090496.
Denominators given by A006953.

Programs

  • GAP
    List([1..25], n-> NumeratorRat(Bernoulli(2*n)/(2*n)));  # G. C. Greubel, Sep 19 2019
  • Magma
    [Numerator(Bernoulli(2*n)/(2*n)):n in [1..40]]; // Vincenzo Librandi, Sep 17 2015
    
  • Maple
    A001067_list := proc(n) 1/(1-1/exp(z)); series(%,z,2*n+4);
    seq(numer((2*i+1)!*coeff(%,z,2*i+1)),i=0..n) end:
    A001067_list(21); # Peter Luschny, Jul 12 2012
  • Mathematica
    Table[ Numerator[ BernoulliB[2n]/(2n)], {n, 1, 22}] (* Robert G. Wilson v, Feb 03 2004 *)
  • PARI
    {a(n) = if( n<1, 0, numerator( bernfrac(2*n) / (2*n)))}; /* Michael Somos, Feb 01 2004 */
    
  • Sage
    @CachedFunction
    def S(n, k) :
        if k == 0 :
            if n == 0 : return 1
            else: return 0
        return S(n, k-1) + S(n-1, n-k)
    def BernoulliDivN(n) :
        if n == 0 : return 1
        return (-1)^n*S(2*n-1,2*n-1)/(4^n-16^n)
    [BernoulliDivN(n).numerator() for n in (1..22)]
    # Peter Luschny, Jul 08 2012
    
  • Sage
    [numerator(bernoulli(2*n)/(2*n)) for n in (1..25)] # G. C. Greubel, Sep 19 2019
    

Formula

Zeta(1-2*n) = - Bernoulli(2*n)/(2*n).
G.f.: numerators of coefficients of z^(2*n) in z/(exp(z)-1). - Benoit Cloitre, Jun 02 2003
For 2 <= k <= 1000 and k != 7, the 2-order of the full constant term of E_k/Delta = 3 + ord_2(k - 7). - Barry Brent (barrybrent(AT)iphouse.com), Jun 01 2009
G.f. for Bernoulli(2*n)/(2*n) = a(n)/A006953(n): (-1)^n/((2*Pi)^(2*n)*(2*n))*integral(log(1-1/t)^(2*n) dt,t=0,1). - Gerry Martens, May 18 2011
E.g.f.: a(n) = numerator((2*n+1)!*[x^(2*n+1)](1/(1-1/exp(x)))). - Peter Luschny, Jul 12 2012
|a(n)| = numerator of Integral_{r=0..1} HurwitzZeta(1-n, r)^2 dr. More general: |Bernoulli(2*n)| = binomial(2*n,n)*n^2*I(n) for n >= 1 where I(n) denotes the integral. - Peter Luschny, May 24 2015

A262235 Denominators of a series leading to Euler's constant gamma.

Original entry on oeis.org

4, 72, 32, 14400, 1728, 2540160, 138240, 261273600, 896000, 10538035200, 209018880, 407994402816000, 5633058816000, 941525544960000, 4723310592, 8707228239790080000, 6162712657920000, 17473102222724628480000, 107559878256230400000, 14162409169997856768000000
Offset: 1

Views

Author

Keywords

Comments

Gamma = 1 - 1/4 - 5/72 - 1/32 - 251/14400 - 19/1728 - 19087/2540160 - ..., see the references below.

Examples

			Denominators of 1/4, 5/72, 1/32, 251/14400, 19/1728, 19087/2540160, ...
		

Crossrefs

Programs

  • Maple
    a := proc(n) local r; r := proc(n) option remember; if n=0 then 1 else
    1 - add(r(k)/(n-k+1), k=0..n-1) fi end: denom(r(n)/(n*(n+1))) end:
    seq(a(n), n=1..20); # Peter Luschny, Apr 19 2018
  • Mathematica
    g[n_] := Sum[Abs[StirlingS1[n, l]]/(l + 1), {l, 1, n}]/(n*(n + 1)!); a[n_] := Denominator[g[n]]; Table[a[n], {n, 1, 20}]

Formula

a(n) = C2(n)/(n*(n + 1)!), where C2(n) are Cauchy numbers of the second kind (see A002657 and A002790).

A036283 Write cosec x = 1/x + Sum e_n x^(2n-1)/(2n-1)!; sequence gives denominators of e_n.

Original entry on oeis.org

6, 60, 126, 120, 66, 16380, 6, 4080, 7182, 3300, 138, 32760, 6, 1740, 42966, 8160, 6, 34545420, 6, 270600, 37926, 1380, 282, 1113840, 66, 3180, 21546, 3480, 354, 1703601900, 6, 16320, 194166, 60, 4686, 5043631320, 6, 60, 9954, 9200400, 498, 142981020, 6
Offset: 1

Views

Author

Keywords

Comments

Denominator of [2^(2n-1) - 1] * Bernoulli(2n)/n.
Equals the denominators of the LS1[-2*m,n=1] matrix coefficients of A160487 for m = 1, 2, ... - Johannes W. Meijer, May 24 2009
The products of the first n terms of this sequence appear in the denominators of the a(n) formulas of the right hand columns of triangle A161739. See A000292 (n=1), A107963 (n=2), A161740 (n=3) and A161741 (n=4). The next six values of n show that this pattern persists. - Johannes W. Meijer, Oct 22 2009

Examples

			x^(-1)+1/6*x+7/360*x^3+31/15120*x^5+...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 75 (4.3.68).

Crossrefs

Programs

  • Maple
    seq(denom((2^(2*n-1)-1)*bernoulli(2*n)/n),n=1..100); # Robert Israel, Oct 14 2016
  • PARI
    a(n) = denominator((2^(2*n-1)-1)*bernfrac(2*n)/n) \\ Hugo Pfoertner, Dec 18 2022

Formula

Apparently a(n) = 6*A202318(n). - Hugo Pfoertner, Dec 18 2022

Extensions

Title corrected and offset changed by Johannes W. Meijer, May 21 2009
More terms, and edited by Robert Israel, Oct 14 2016

A075180 Denominators from e.g.f. 1/(1-exp(-x)) - 1/x.

Original entry on oeis.org

2, 12, 1, 120, 1, 252, 1, 240, 1, 132, 1, 32760, 1, 12, 1, 8160, 1, 14364, 1, 6600, 1, 276, 1, 65520, 1, 12, 1, 3480, 1, 85932, 1, 16320, 1, 12, 1, 69090840, 1, 12, 1, 541200, 1, 75852, 1, 2760, 1, 564, 1, 2227680, 1, 132, 1, 6360, 1, 43092, 1, 6960, 1, 708, 1, 3407203800, 1, 12, 1, 32640, 1, 388332, 1, 120, 1, 9372, 1, 10087262640, 1, 12
Offset: 0

Views

Author

Wolfdieter Lang, Sep 06 2002

Keywords

Comments

Denominators of -zeta(-n), n >= 0, where zeta is Riemann's zeta function.
Numerators are +1, A060054(n+1), n >= 1.

Examples

			1/2, 1/12, 0, -1/120, 0, 1/252, 0, -1/240, 0, 1/132, 0, -691/32760, ...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 807, combined eqs. 23.2.11,14 and 15.

Crossrefs

Programs

  • Haskell
    a075180 n = a075180_list !! n
    a075180_list = map (denominator . sum) $ zipWith (zipWith (%))
       (zipWith (map . (*)) a000142_list a242179_tabf) a106831_tabf
    -- Reinhard Zumkeller, Jul 04 2014
  • Maple
    a := n -> denom(bernoulli(n+1,1)/(n+1)); # Peter Luschny, Apr 22 2009
  • Mathematica
    a[m_] := Sum[(-2)^(-k-1) k! StirlingS2[m,k],{k,0,m}]/(2^(m+1)-1); Table[Denominator[a[i]], {i,0,20}] (* Peter Luschny, Apr 29 2009 *)
    Table[Denominator[Zeta[-n]], {n, 0, 49}] (* Alonso del Arte, Jan 13 2012 *)
    CoefficientList[ Series[ EulerGamma - HarmonicNumber[n] + Log[n], {n, Infinity, 48}], 1/n] // Rest // Denominator (* Jean-François Alcover, Mar 28 2013 *)
    With[{nn=50},Denominator[CoefficientList[Series[1/(1-Exp[-x])-1/x,{x,0,nn}],x] Range[0,nn-1]!]] (* Harvey P. Dale, Apr 13 2016 *)
  • PARI
    x='x+O('x^66);
    egf = 1/(1-exp(-x)) - 1/x;
    v=Vec(serlaplace(egf));
    vector(#v,n, denominator(v[n]))
    /* Joerg Arndt, Mar 28 2013 */
    
  • PARI
    A075180(n) = denominator(bernfrac(n+1)/(n+1)); \\ Antti Karttunen, Dec 19 2018, after Maple-program.
    

Formula

a(n) = denominator(-Zeta(-n)) = denominator(((-1)^(n+1))*B(n+1)/(n+1)), n >= 0, with Riemann's zeta function and the Bernoulli numbers B(n).
a(n) = denominators from e.g.f. (B(-x) - 1)/x, with B(x) = x/(exp(x) - 1), e.g.f. for Bernoulli numbers A027641(n)/A027642(n), n >= 0.
From Jianing Song, Apr 05 2021: (Start)
a(2n-1) = A006863(n)/2 for n > 0. By the comments in A006863, A006863(n) = A079612(2n) for n > 0. Hence a(n) = A079612(n+1)/2 all odd n. For all even n > 0, we have a(n) = 1, which is also equal to A079612(n+1)/2.
For odd n, a(n) is the product of p^(e+1) where p^e*(p-1) divides n+1 but p^(e+1)*(p-1) does not. For example, a(11) = 2^3 * 3^2 * 5^1 * 7^1 * 13^1 = 32760.
a(2n-1) = A002445(n)*(2n)/A300711(n), n > 0. (End)
a(2*n-1) = A006953(n) for n >= 1. - Georg Fischer, Dec 01 2022

Extensions

More terms from Antti Karttunen, Dec 19 2018

A262382 Numerators of a semi-convergent series leading to the first Stieltjes constant gamma_1.

Original entry on oeis.org

-1, 11, -137, 121, -7129, 57844301, -1145993, 4325053069, -1848652896341, 48069674759189, -1464950131199, 105020512675255609, -22404210159235777, 1060366791013567384441, -15899753637685210768473787, 2241672100026760127622163469, -8138835628210212414423299
Offset: 1

Views

Author

Keywords

Comments

gamma_1 = - 1/12 + 11/720 - 137/15120 + 121/11200 - 7129/332640 + 57844301/908107200 - ..., see formulas (46)-(47) in the reference below.

Examples

			Numerators of -1/12, 11/720, -137/15120, 121/11200, -7129/332640, 57844301/908107200, ...
		

Crossrefs

Cf. A001620, A002206, A195189, A075266, A262235, A001067, A006953, A082633, A262383 (denominators of this series), A086279, A086280, A262387.

Programs

  • Maple
    a := n -> numer(Zeta(1 - 2*n)*(Psi(2*n) + gamma)):
    seq(a(n), n=1..16); # Peter Luschny, Apr 19 2018
  • Mathematica
    a[n_] := Numerator[-BernoulliB[2*n]*HarmonicNumber[2*n - 1]/(2*n)]; Table[a[n], {n, 1, 20}]
  • PARI
    a(n) = numerator(-bernfrac(2*n)*sum(k=1,2*n-1,1/k)/(2*n)); \\ Michel Marcus, Sep 23 2015

Formula

a(n) = numerator(-B_{2n}*H_{2n-1}/(2n)), where B_n and H_n are Bernoulli and harmonic numbers respectively.
a(n) = numerator(Zeta(1 - 2*n)*(Psi(2*n) + gamma)), where gamma is Euler's gamma. - Peter Luschny, Apr 19 2018

A262383 Denominators of a semi-convergent series leading to the first Stieltjes constant gamma_1.

Original entry on oeis.org

12, 720, 15120, 11200, 332640, 908107200, 4324320, 2940537600, 175991175360, 512143632000, 1427794368, 7795757249280, 107084577600, 279490747536000, 200143324310529600, 1178332991611776000, 157531148611200, 906996615309386784000, 5828652498614400, 262872227687509440000
Offset: 1

Views

Author

Keywords

Comments

gamma_1 = - 1/12 + 11/720 - 137/15120 + 121/11200 - 7129/332640 + 57844301/908107200 - ..., see formulas (46)-(47) in the reference below.

Examples

			Denominators of -1/12, 11/720, -137/15120, 121/11200, -7129/332640, 57844301/908107200, ...
		

Crossrefs

Programs

  • Maple
    a := n -> denom(Zeta(1 - 2*n)*(Psi(2*n) + gamma)):
    seq(a(n), n=1..20); # Peter Luschny, Apr 19 2018
  • Mathematica
    a[n_] := Denominator[-BernoulliB[2*n]*HarmonicNumber[2*n - 1]/(2*n)]; Table[a[n], {n, 1, 20}]
  • PARI
    a(n) = denominator(-bernfrac(2*n)*sum(k=1,2*n-1,1/k)/(2*n)); \\ Michel Marcus, Sep 23 2015

Formula

a(n) = denominator(-B_{2n}*H_{2n-1}/(2n)), where B_n and H_n are Bernoulli and harmonic numbers respectively.
a(n) = denominator(Zeta(1 - 2*n)*(Psi(2*n) + gamma)), where gamma is Euler's gamma. - Peter Luschny, Apr 19 2018

A262387 Denominators of a semi-convergent series leading to the third Stieltjes constant gamma_3.

Original entry on oeis.org

1, 120, 1008, 28800, 49896, 101088000, 5702400, 12350257920000, 43480172736000, 7075668600000, 206069667148800, 5919216795588096000, 581222138112000, 8460252005694128640000, 18991807088644406016000, 1150594272774401495040000, 33940540399314092544000, 9737059611553100811150566400000, 1290633707289706940160000, 1263402804161736165764268432000000
Offset: 1

Views

Author

Keywords

Comments

gamma_3 = + 1/120 - 17/1008 + 967/28800 - 4523/49896 + 33735311/101088000 - ..., see formulas (46)-(47) in the reference below.

Examples

			Denominators of -0/1, 1/120, -17/1008, 967/28800, -4523/49896, 33735311/101088000, ...
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Denominator[-BernoulliB[2*n]*(HarmonicNumber[2*n - 1]^3 - 3*HarmonicNumber[2*n - 1]*HarmonicNumber[2*n - 1, 2] + 2*HarmonicNumber[2*n - 1, 3])/(2*n)]; Table[a[n], {n, 1, 20}]
  • PARI
    a(n) = denominator(-bernfrac(2*n)*(sum(k=1,2*n-1,1/k)^3 -3*sum(k=1,2*n-1,1/k)*sum(k=1,2*n-1,1/k^2) + 2*sum(k=1,2*n-1,1/k^3))/(2*n));

Formula

a(n) = denominator(-B_{2n}*(H^3_{2n-1}-3*H_{2n-1}*H^(2){2n-1}+2*H^(3){2n-1})/(2n)), where B_n, H_n and H^(k)_n are Bernoulli, harmonic and generalized harmonic numbers respectively.
Showing 1-10 of 18 results. Next