cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A160487 The Lambda triangle.

Original entry on oeis.org

1, -107, 10, 59845, -7497, 210, -6059823, 854396, -35574, 420, 5508149745, -827924889, 41094790, -765534, 4620, -8781562891079, 1373931797082, -75405128227, 1738417252, -17219202, 60060
Offset: 2

Views

Author

Johannes W. Meijer, May 24 2009, Sep 18 2012

Keywords

Comments

The coefficients of the LS1 matrix are defined by LS1[2*m,n] = int(y^(2*m)/(sinh(y))^(2*n-1),y=0..infinity)/factorial(2*m) for m = 1, 2, 3, .. and n = 1, 2, 3, .. under the condition that n <= m.
This definition leads to LS1[2*m,n=1] = 2*lambda(2*m+1), for m = 1, 2, .. , and the recurrence relation LS1[2*m,n] = ((2*n-3)/(2*n-2))*(LS1[2*m-2,n-1]/(2*n-3)^2- LS1[2*m,n-1]). As usual lambda(m) = (1-2^(-m))*zeta(m) with zeta(m) the Riemann zeta function.
These two formulas enable us to determine the values of the LS1[2*m,n] coefficients, for all integers m and all positive integers n, but not for all n. If we choose, somewhat but not entirely arbitrarily, LS1[m=0,n=1] = gamma, with gamma the Euler-Mascheroni constant, we can determine them all.
The coefficients in the columns of the LS1 matrix, for m = 0, 1, 2, .. , and n = 2, 3, 4 .. , can be generated with the GL(z;n) polynomials for which we found the following general expression GL(z;n) = (h(n)*CFN2(z;n)*GL(z;n=1) + LAMBDA(z;n))/p(n).
The CFN2(z;n) polynomials depend on the central factorial numbers A008956.
The LAMBDA(z;n) are the Lambda polynomials which lead to the Lambda triangle.
The zero patterns of the Lambda polynomials resemble a UFO. These patterns resemble those of the Eta, Zeta and Beta polynomials, see A160464, A160474 and A160480.
The first Maple algorithm generates the coefficients of the Lambda triangle. The second Maple algorithm generates the LS1[2*m,n] coefficients for m= -1, -2, -3, .. .
Some of our results are conjectures based on numerical evidence.

Examples

			The first few rows of the triangle LAMBDA(n,m) with n=2,3,.. and m=1,2,.. are
  [1]
  [ -107, 10]
  [59845, -7497, 210]
  [ -6059823, 854396, -35574, 420]
The first few LAMBDA(z;n) polynomials are
  LAMBDA (z;n=2) = 1
  LAMBDA (z;n=3) = -107 +10*z^2
  LAMBDA (z;n=4) = 59845-7497*z^2+210*z^4
The first few CFN2(z;n) polynomials are
  CFN2(z;n=2) = (z^2-1)
  CFN2(z;n=3) = (z^4-10*z^2+9)
  CFN2(z;n=4) = (z^6- 35*z^4+259*z^2-225)
The first few generating functions GL(z;n) are:
  GL(z;n=2) = (6*(z^2-1)*GL(z,n=1) + (1)) /12
  GL(z;n=3) = (60*(z^4-10*z^2+9)*GL(z,n=1)+ (-107+10*z^2)) / 1440
  GL(z;n=4) = (1260*( z^6- 35*z^4+259*z^2-225)*GL(z,n=1) + (59845-7497*z^2+ 210*z^4))/907200
		

References

  • Mohammad K. Azarian, Problem 1218, Pi Mu Epsilon Journal, Vol. 13, No. 2, Spring 2010, p. 116. Solution published in Vol. 13, No. 3, Fall 2010, pp. 183-185.

Crossrefs

A160488 equals the first left hand column.
A160476 equals the first right hand column and 6*h(n).
A160489 equals the rows sums.
A160490 equals the p(n) sequence.
A160479 equals the ZL(n) sequence.
A001620 is the Euler-Mascheroni constant gamma.
The LS1[ -2, n] coefficients lead to A002197, A002198 and A058962.
The LS1[ -2*m, 1] coefficients equal (-1)^(m+1)*A036282/A036283.
The CFN2(z, n) and the cfn2(n, k) lead to A008956.
Cf. The Eta, Zeta and Beta triangles A160464, A160474 and A160480.
Cf. A162448 (LG1 matrix)

Programs

  • Maple
    nmax:=7; for n from 0 to nmax do cfn2(n, 0) := 1: cfn2(n, n) := (doublefactorial(2*n-1))^2 od: for n from 1 to nmax do for k from 1 to n-1 do cfn2(n, k) := (2*n-1)^2*cfn2(n-1, k-1) + cfn2(n-1, k) od: od: for n from 1 to nmax do Delta(n-1) := sum((1-2^(2*k1-1))* (-1)^(n+1)*(-bernoulli(2*k1)/(2*k1))*(-1)^(k1+n)*cfn2(n-1,n-k1, n), k1=1..n) / (2*4^(n-1)*(2*n-1)!); LAMBDA(-2, n) := sum(2*(1-2^(2*k1-1))*(-bernoulli(2*k1) / (2*k1))*(-1)^(k1+n)* cfn2(n-1,n-k1), k1=1..n)/ factorial(2*n-2) end do: Lcgz(2) := 1/12: f(2) := 1/12: for n from 3 to nmax do Lcgz(n) := LAMBDA(-2, n-1)/((2*n-2)*(2*n-3)): f(n) := Lcgz(n)-((2*n-3)/(2*n-2))*f(n-1) end do: for n from 1 to nmax do b(n) := denom(Lcgz(n+1)) end do: for n from 1 to nmax do b(n) := 2*n*denom(Delta(n-1))/2^(2*n) end do: p(2) := b(1): for n from 2 to nmax do p(n+1) := lcm(p(n)*(2*n)*(2*n-1), b(n)) end do: for n from 2 to nmax do LAMBDA(n, 1) := p(n)*f(n) end do: mmax:=nmax: for n from 2 to nmax do LAMBDA(n, n) := 0 end do: for n from 1 to nmax do b(n) := (2*n)*(2*n-1)*denom(Delta(n-1))/ (2^(2*n)*(2*n-1)) end do: c(1) := b(1): for n from 1 to nmax-1 do c(n+1) := lcm(c(n)*(2*n+2)* (2*n+1), b(n+1)) end do: for n from 1 to nmax do cm(n) := c(n)/(6*(2*n)!) end do: for n from 1 to nmax-1 do ZL(n+2) := cm(n+1)/cm(n) end do: for m from 2 to mmax do for n from m+1 to nmax do LAMBDA(n, m) := ZL(n)*(LAMBDA(n-1, m-1)-(2*n-3)^2*LAMBDA(n-1, m)) end do end do; seq(seq(LAMBDA(n,m), m=1..n-1), n=2..nmax);
    # End first program.
    nmax1:=10; m:=1; LS1row:=-2*m; for n from 0 to nmax1 do cfn2(n, 0) := 1: cfn2(n, n) := (doublefactorial(2*n-1))^2 od: for n from 1 to nmax1 do for k from 1 to n-1 do cfn2(n, k) := (2*n-1)^2*cfn2(n-1, k-1) + cfn2(n-1, k) od: od: mmax1:=nmax1: for m1 from 1 to mmax1 do LS1[-2*m1, 1] := 2*(1-2^(-(-2*m1+1)))*(-bernoulli(2*m1)/(2*m1)) od: for n from 2 to nmax1 do for m1 from 1 to mmax1-n+1 do LS1[ -2*m1, n] := sum((-1)^(k1+1)*cfn2(n-1,k1-1)* LS1[2*k1-2*n-2*m1, 1], k1=1..n)/(2*n-2)! od: od: seq(LS1[ -2*m, n], n=1..nmax1-m+1);
    # End second program.

Formula

We discovered a remarkable relation between the Lambda triangle coefficients Lambda(n,m) = ZL(n)*(Lambda(n-1,m-1)-(2*n-3)^2*Lambda(n-1,m)) for n = 3, 4, .. and m = 2, 3, .. . See A160488 for LAMBDA(n,m=1) and furthermore LAMBDA(n,n) = 0 for n = 2, 3, .. .
We observe that the ZL(n) = A160479(n) sequence also rules the Zeta triangle A160474.
The generating functions GL(z;n) of the coefficients in the matrix columns are defined by
GL(z;n) = sum(LS1[2*m-2,n]*z^(2*m-2), m=1..infinity), with n = 1, 2, 3, .. .
This definition, and our choice of LS1[m=0,n=1] = gamma, leads to GL(z;n=1) = -2*Psi(1-z)+Psi(1-(z/2))-(Pi/2)*tan(Pi*z/2) with Psi(z) the digamma-function. Furthermore we discovered that GL(z;n) =GL(z;n-1)*(z^2/((2*n-2)*(2*n-3)) -(2*n-3)/((2*n-2)))+LS1[ -2,n-1]/((2*n-2)*(2*n-3)) for n = 2, 3 , .. . with LS1[ -2,n] = (-1)^(n-1)*4*A058962(n-1)*A002197(n-1)/A002198(n-1) for n = 1, 2, .. , with A058962(n-1) = 2^(2*n-2)*(2*n-1).
We found the following general expression for the GL(z;n) polynomials, for n = 2, 3, ..
GL(z;n) = (h(n)*CFN2(z;n)*GL(z;n=1) + LAMBDA(z;n))/p(n) with
h(n) = 6*A160476(n) and p(n) = A160490(n).

A161739 The RSEG2 triangle.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 4, 1, 0, 0, 13, 10, 1, 0, -4, 30, 73, 20, 1, 0, 0, -14, 425, 273, 35, 1, 0, 120, -504, 1561, 3008, 798, 56, 1, 0, 0, 736, -2856, 25809, 14572, 1974, 84, 1, 0, -12096, 44640, -73520, 125580, 218769, 55060, 4326, 120, 1
Offset: 0

Views

Author

Johannes W. Meijer & Nico Baken (n.h.g.baken(AT)tudelft.nl), Jun 18 2009

Keywords

Comments

The EG2[2*m,n] matrix coefficients were introduced in A008955. We discovered that EG2[2m,n] = Sum_{k = 1..n} (-1)^(k+n)*t1(n-1,k-1)*2*eta(2*m-2*n+2*k)/((n-1)!)^2 with t1(n,m) the central factorial numbers A008955 and eta(m) = (1-2^(1-m))*zeta(m) with eta(m) the Dirichlet eta function and zeta(m) the Riemann zeta function.
A different way to define these matrix coefficients is EG2[2*m,n] = (1/m)*Sum_{k = 0..m-1} ZETA(2*m-2*k, n-1)*EG2[2*k, n] with ZETA(2*m, n-1) = zeta(2*m) - Sum_{k = 1..n-1} (k)^(-2*m) and EG2[0, n] = 1, for m = 0, 1, 2, ..., and n = 1, 2, 3, ... .
We define the row sums of the EG2 matrix rs(2*m,p) = Sum_{n >= 1} (n^p)*EG2(2*m,n) for p = -2, -1, 0, 1, ... and m >= p+2. We discovered that rs(2*m,p=-2) = 2*eta(2*m+2) = (1 - 2^(1-(2*m+2)))*zeta(2*m+2). This formula is quite unlike the other rs(2*m,p) formulas, see the examples.
The series expansions of the row generators RGEG2(z,2*m) about z = 0 lead to the EG2[2*m,n] coefficients while the series expansions about z = 1 lead to the ZG1[2*m-1,n] coefficients, see the formulas.
The first Maple program gives the triangle coefficients. Adding the second program to the first one gives information about the row sums rs(2*m,p).
The a(n) formulas of the right hand columns are related to sequence A036283, see also A161740 and A161741.

Examples

			The first few expressions for the ZG1[2*m-1,p+1] coefficients are:
  ZG1[2*m-1, 1] = (zeta(2*m-1))/(1/2)
  ZG1[2*m-1, 2] = (zeta(2*m-3) - zeta(2*m-1))/1
  ZG1[2*m-1, 3] = (zeta(2*m-5) - 5*zeta(2*m-3) + 4*zeta(2*m-1))/6
  ZG1[2*m-1, 4] = (zeta(2*m-7) - 14*zeta(2*m-5) + 49*zeta(2*m-3) - 36*zeta(2*m-1))/72
The first few rs(2*m,p) are (m >= p+2)
  rs(2*m, p=0) = ZG1[2*m-1,1]
  rs(2*m, p=1) = ZG1[2*m-1,1] + ZG1[2*m-1,2]
  rs(2*m, p=2) = ZG1[2*m-1,1] + 3*ZG1[2*m-1,2] + 2*ZG1[2*m-1,3]
  rs(2*m, p=3) = ZG1[2*m-1,1] + 7*ZG1[2*m-1,2] + 12*ZG1[2*m-1,3] + 6*ZG1[2*m-1,4]
The first few rs(2*m,p) are (m >= p+2)
  rs(2*m, p=-1) = zeta(2*m+1)/(1/2)
  rs(2*m, p=0) = zeta(2*m-1)/(1/2)
  rs(2*m, p=1) = (zeta(2*m-1) + zeta(2*m-3))/1
  rs(2*m, p=2) = (zeta(2*m-1) + 4*zeta(2*m-3) + zeta(2*m-5))/3
  rs(2*m, p=3) = (0*zeta(2*m-1) + 13*zeta(2*m-3) + 10*zeta(2*m-5) + zeta(2*m-7))/12
The first few rows of the RSEG2 triangle are:
  [1]
  [0, 1]
  [0, 1, 1]
  [0, 1, 4, 1]
  [0, 0, 13, 10, 1]
  [0, -4, 30, 73, 20, 1]
		

Crossrefs

A000007, A129825, A161742 and A161743 are the first four left hand columns.
A000012, A000292, A107963, A161740 and A161741 are the first five right hand columns.
A010790 equals 2*r(n) and A054977 equals denom(r(n)).
A001710 equals numer(q(n)) and A141044 equals denom(q(n)).
A000142 equals the row sums.
A008955 is a central factorial number triangle.
A028246 is Worpitzky's triangle.

Programs

  • Maple
    nmax:=10; for n from 0 to nmax do A008955(n, 0) := 1 end do: for n from 0 to nmax do A008955(n, n) := (n!)^2 end do: for n from 1 to nmax do for m from 1 to n-1 do A008955(n, m) := A008955(n-1, m-1)*n^2 + A008955(n-1, m) end do: end do: for n from 1 to nmax do A028246(n, 1) := 1 od: for n from 1 to nmax do A028246(n, n) := (n-1)! od: for n from 3 to nmax do for m from 2 to n-1 do A028246(n, m) := m*A028246(n-1, m) + (m-1)*A028246(n-1, m-1) od: od: for i from 0 to nmax-2 do s(i) := ((i+1)!/2)*sum(A028246(i+1, k1+1)*(sum((-1)^(j)*A008955(k1, j)*2*x^(2*nmax-(2*k1+1-2*j)), j=0..k1)/ (k1!*(k1+1)!)), k1=0..i) od: a(0,0) := 1: for n from 1 to nmax-1 do for m from 0 to n do a(n,m) := coeff(s(n-1), x, 2*nmax-1-2*m+2) od: od: seq(seq(a(n, m), m=0..n), n=0..nmax-1); for n from 0 to nmax-1 do seq(a(n, m), m=0..n) od;
    m:=7: row := 2*m; rs(2*m, -2) := 2*eta(2*m+2); for p from -1 to m-2 do q(p+1) := (p+1)!/2 od: for p from -1 to m-2 do rs(2*m, p) := sum(a(p+1, k)*zeta(2*m+1-2*k), k=0..p+1)/q(p+1) od;

Formula

RGEG2(2*m,z) = Sum_{n >= 1} EG2[2*m,n]*z^(n-1) = Integral_{y = 0..oo}((2*y)^(2*m)/(2*m)!)* cosh(y)/(cosh(y)^2 - z)^(3/2) for m >= 0.
EG2[2*m,n] = Sum_{k = 1..n} (-1)^(k+n)* A008955(n-1, k-1)*2*eta(2*m-2*n+2*k)/((n-1)!)^2.
ZG1[2*m-1,p+1] = Sum_{j = 0..p} (-1)^j*A008955(p, j)*zeta(2*m-(2*p+1-2*j))/ r(p) with r(p)= p!*(p+1)!/2 and p >= 0.
rs(2*m,p) = Sum_{k = 0..p} A028246(p+1,k+1)*ZG1[2*m-1,k+1] and p >= 0; p <= m-2.
rs(2*m,p) = Sum_{k = 0..p+1} A161739(p+1,k)*zeta(2*m+1-2*k)/q(p+1) with q(p+1) = (p+1)!/2 and p >= -1; p <= m-2.
From Peter Bala, Mar 19 2022: (Start)
It appears that the k-th row polynomial (with indexing starting at k = 1) is given by R(k,n^2) = (k-1)!*Sum_{i = 0..n} (-1)^(n-i)*(i^k)* binomial(n,i)*binomial(n+i,i)/(n+i) for n >= 1.
For example, for k = 6, Maple's SumTools:-Summation procedure gives 5!*Sum_{i = 0..n} (-1)^(n-i)*(i^6)*binomial(n,i)*binomial(n+i,i)/(n+i) = -4*n^2 + 30*n^4 + 73*n^6 + 20*n^8 + n^10 = R(6,n^2). (End)

Extensions

Minor error corrected and edited by Johannes W. Meijer, Sep 22 2012

A185633 For odd n, a(n) = 2; for even n, a(n) = denominator of Bernoulli(n)/n; The number 2 alternating with the elements of A006953.

Original entry on oeis.org

2, 12, 2, 120, 2, 252, 2, 240, 2, 132, 2, 32760, 2, 12, 2, 8160, 2, 14364, 2, 6600, 2, 276, 2, 65520, 2, 12, 2, 3480, 2, 85932, 2, 16320, 2, 12, 2, 69090840, 2, 12, 2, 541200, 2, 75852, 2, 2760, 2, 564, 2, 2227680, 2, 132, 2, 6360
Offset: 1

Views

Author

Paul Curtz, Dec 18 2012

Keywords

Comments

There is an integer sequence b(n) = A053657(n)/2^(n-1) = 1, 1, 6, 6, 360, 360, 45360, 45360, 5443200, 5443200,... which consists of the duplicated entries of A202367.
The ratios of this sequence are b(n+1)/b(n) = 1, 6, 1, 60, 1, 126 .... = a(n)/2, which is a variant of A036283.

Crossrefs

Cf. A006953, A007395 (bisections).
Cf. A006863, A027760, A067513, A322312, A322315 (rgs-transform).

Programs

  • Maple
    A185633 := proc(n)
        A053657(n+1)/A053657(n) ;
    end proc: # R. J. Mathar, Dec 19 2012
  • Mathematica
    max = 52; s = Expand[Normal[Series[(-Log[1-x]/x)^z, {x, 0, max}]]]; a[n_, k_] := Denominator[Coefficient[s, x^n*z^k]]; A053657 = Prepend[LCM @@@ Table[a[n, k], {n, max}, {k, n}], 1]; a[n_] := A053657[[n+1]]/A053657[[n]]; Table[a[n], {n, 1, max}] (* Jean-François Alcover, Dec 20 2012 *)
  • PARI
    A185633(n) = if(n%2,2,denominator(bernfrac(n)/(n))); \\ Antti Karttunen, Dec 03 2018
    
  • PARI
    A185633(n) = { my(m=1); fordiv(n, d, if(isprime(1+d), m *= (1+d)^(1+valuation(n,1+d)))); (m); }; \\ Antti Karttunen, Dec 03 2018

Formula

a(n) = A053657(n+1)/A053657(n).
a(2*n) = 2*A036283(n).
From Antti Karttunen, Dec 03 2018: (Start)
a(n) = Product_{d|n} [(1+d)^(1+A286561(n,1+d))]^A010051(1+d) - after Peter J. Cameron's Mar 25 2002 comment in A006863.
A007947(a(n)) = A027760(n)
A001221(a(n)) = A067513(n).
A181819(a(n)) = A322312(n).
(End)

Extensions

Name edited by Antti Karttunen, Dec 03 2018

A036280 Numerators in Taylor series for x * cosec(x).

Original entry on oeis.org

1, 1, 7, 31, 127, 73, 1414477, 8191, 16931177, 5749691557, 91546277357, 3324754717, 1982765468311237, 22076500342261, 65053034220152267, 925118910976041358111, 16555640865486520478399, 8089941578146657681, 29167285342563717499865628061
Offset: 0

Views

Author

Keywords

Comments

These are also the numerators of the coefficients appearing in the Maclaurin summation formula (which might be called the 'Maclaurin numbers') (see Gould & Squire, p. 45). - Peter Luschny, Feb 20 2016

Examples

			cosec(x) = x^(-1) + (1/6)*x + (7/360)*x^3 + (31/15120)*x^5 + ...
1, 1/6, 7/360, 31/15120, 127/604800, 73/3421440, 1414477/653837184000, 8191/37362124800, ...
		

References

  • G. W. Caunt, Infinitesimal Calculus, Oxford Univ. Press, 1914, p. 477.

Crossrefs

Programs

  • Maple
    series(x*csc(x),x,60);
    seq(numer((-1)^n*bernoulli(2*n,1/2)/(2*n)!), n=0..30); # Robert Israel, Mar 21 2016
  • Mathematica
    nn = 34; t = Numerator[CoefficientList[Series[x*Csc[x], {x, 0, nn}], x]*Range[0, nn]!]; Take[t, {1, nn-1, 2}] (* T. D. Noe, Oct 28 2013 *)
  • Maxima
    a(n):=num(sum(sum((2^(1-j)*(-1)^(n+j-1)*binomial(k,j)*sum((j-2*i)^(2*n+j-2)*binomial(j,i)*(-1)^(i),i,0,floor(j/2)))/(2*n+j-2)!,j,1,k),k,1,2*n-2)); /* n>1. a(1)=1. */ /* Vladimir Kruchinin, Apr 12 2011 */
    
  • Maxima
    a(n):=(sum((sum(binomial(j,2*k-1)*(j-1)!*2^(1-j)*(-1)^(n+1+j)*stirling2(2*n+1,j),j,2*k-1,2*n+1))/(2*k-1),k,1,n+1))/(2*n)!;
    /* Vladimir Kruchinin, Mar 21 2016 */
    
  • PARI
    a(n)=numerator(sum(k=1,n,sum(j=0,k/2,binomial(3*n,n-k)*(-1)^(n+j)*(2*j-k)^(2*n+k)*2^(n+1-k)*(n+1)!/(j!*(k-j)!*(k+1))))/((3*n)!*2^n))+(n==0) \\ Tani Akinari, Feb 22 2025
    
  • PARI
    my(x='x+O('x^40), v=apply(numerator, Vec(x/sin(x)))); vector(#v\2, k, v[2*k-1]) \\ Michel Marcus, Feb 23 2025
  • Sage
    def A036280_list(len):
        R, C = [1], [1]+[0]*(len-1)
        for n in (1..len-1):
            for k in range(n, 0, -1):
                C[k] = -C[k-1] / (8*k*(2*k+1))
            C[0] = -sum(C[k] for k in (1..n))
            R.append(C[0].numerator())
        return R
    print(A036280_list(19)) # Peter Luschny, Feb 20 2016
    

Formula

Numerator of Sum_{k=1..2*n-2} Sum_{j=1..k} 2^(1-j)*(-1)^(n+j-1) * binomial(k,j) * Sum_{i=0..floor(j/2)} (j-2*i)^(2*n+j-2) * binomial(j,i) * (-1)^i/(2*n+j-2)!, n > 1. - Vladimir Kruchinin, Apr 12 2011
E.g.f.: x/sin(x) = 1 + (x^2/(6-x^2))*T(0), where T(k) = 1 - x^2*(2*k+2)*(2*k+3)/( x^2*(2*k+2)*(2*k+3) + ((2*k+2)*(2*k+3) - x^2)*((2*k+4)*(2*k+5) - x^2)/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 25 2013
a(n) = numerator((-1)^n*B(2*n,1/2)/(2*n)!) where B(n,x) denotes the Bernoulli polynomial. - Peter Luschny, Feb 20 2016
a(n) = numerator(Sum_{k=1..n+1}((Sum_{j=2*k-1..2*n+1}(binomial(j,2*k-1)*(j-1)!*2^(1-j)*(-1)^(n+1+j)*stirling2(2*n+1,j)))/(2*k-1))/(2*n)!). - Vladimir Kruchinin, Mar 21 2016
a(n) = numerator(eta(2*n)/Pi^(2*n)), where eta(n) is the Dirichlet eta function. See A230265 for denominator. - Mohammed Yaseen, Aug 02 2023
a(n) = numerator((Sum_{k=1..n} Sum_{j=0..floor(k/2)} binomial(3*n,n-k)*(-1)^(n+j)*(2*j-k)^(2*n+k)*2^(n+1-k)*(n+1)!/(j!*(k-j)!*(k+1)))/((3*n)!*2^n)) for n > 0. - Tani Akinari, Feb 22 2025

A036282 Write cosec x = 1/x + Sum_{n>=1} e_n * x^(2n-1)/(2n-1)!; sequence gives numerators of e_n.

Original entry on oeis.org

1, 7, 31, 127, 511, 1414477, 8191, 118518239, 5749691557, 91546277357, 162912981133, 1982765468311237, 22076500342261, 455371239541065869, 925118910976041358111, 16555640865486520478399, 1302480594081611886641, 904185845619475242495834469891
Offset: 1

Views

Author

Keywords

Comments

From Johannes W. Meijer, May 24 2009: (Start)
Absolute value of numerator of [2^(2n-1) - 1] * Bernoulli(2n)/n.
Equals the absolute values of the numerators of the LS1[ -2*m,n=1] matrix coefficients of A160487 for m = 1, 2, .. ,.
(End)

Examples

			cosec x
= x^(-1) + 1/6*x + 7/360*x^3 + 31/15120*x^5 + ...
= x^(-1) + 1/6 * x/1! + 7/60 * x^3/3! + 31/126 * x^5/5! + ...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 75 (4.3.68).

Crossrefs

Cf. A160487.
Differs from A282898.

Programs

  • Maple
    a:= n-> (m-> numer(coeff(series(csc(x), x, m+1), x, m)*m!))(2*n-1):
    seq(a(n), n=1..20);  # Alois P. Heinz, Jun 21 2018
  • Mathematica
    a[n_] := Abs[ Numerator[ (2^(2*n-1)-1) * BernoulliB[2*n]/n ] ]; Table[a[n], {n, 1, 18}] (* Jean-François Alcover, May 31 2013, after Johannes W. Meijer *)
  • PARI
    a(n) = abs(numerator((2^(2*n-1)-1)*bernfrac(2*n)/n)); \\ Michel Marcus, Mar 01 2015

Extensions

Title corrected and offset changed by Johannes W. Meijer, May 21 2009

A036281 Denominators in Taylor series for x * cosec(x).

Original entry on oeis.org

1, 6, 360, 15120, 604800, 3421440, 653837184000, 37362124800, 762187345920000, 2554547108585472000, 401428831349145600000, 143888775912161280000, 846912068365871834726400000, 93067260259985915904000000, 2706661834818276108533760000000
Offset: 0

Views

Author

Keywords

Examples

			cosec(x) = x^(-1)+1/6*x+7/360*x^3+31/15120*x^5+...
1, 1/6, 7/360, 31/15120, 127/604800, 73/3421440, 1414477/653837184000, 8191/37362124800, ...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 75 (4.3.68).
  • G. W. Caunt, Infinitesimal Calculus, Oxford Univ. Press, 1914, p. 477.

Crossrefs

Cf. A036280, also A036282, A036283, B(2n) = A027641(2n) / A027642(2n).

Programs

  • Maple
    series(csc(x),x,60);
  • Mathematica
    a[n_] := 2(2^(2n-1)-1) Abs[BernoulliB[2n]]/(2n)! // Denominator;
    Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Jul 14 2018 *)
  • Sage
    def A036281_list(len):
        R, C = [1], [1]+[0]*(len-1)
        for n in (1..len-1):
            for k in range(n, 0, -1):
                C[k] = -C[k-1] / (k*(4*k+2))
            C[0] = -sum(C[k] for k in (1..n))
            R.append(C[0].denominator())
        return R
    print(A036281_list(15)) # Peter Luschny, Feb 21 2016

Formula

A036280(n)/a(n)= 2 *(2^(2n-1) -1) *abs(B(2n)) / (2n)!.
From Arkadiusz Wesolowski, Oct 16 2013: (Start)
a(n) = A036280(n)*Pi^(2*n)/(zeta(2*n)*(2 - (2^(1-n))^2)).
a(n) = A230265(n)/2. (End)

A202318 Let (n)_p denote the exponent of prime p in the prime power factorization of n. Then a(n) is defined by the formulas a(1)=1; for n >= 2, (a(n))_2 = (n)_2, (a(n))_3 = (n)_3 and, for p >= 5, (a(n))_p = 1 + ((2n)/(p-1))_p if p-1|2*n, and (a(n))_p = 0 otherwise.

Original entry on oeis.org

1, 10, 21, 20, 11, 2730, 1, 680, 1197, 550, 23, 5460, 1, 290, 7161, 1360, 1, 5757570, 1, 45100, 6321, 230, 47, 185640, 11, 530, 3591, 580, 59, 283933650, 1, 2720, 32361, 10, 781, 840605220, 1, 10, 1659, 1533400, 83, 23830170, 1, 40940, 408177, 470, 1, 36014160, 1, 277750, 2163, 1060, 107, 1882725390
Offset: 1

Views

Author

Keywords

Comments

a(n)=1 iff n has form 6n+-1 and, if d >= 5 is a divisor of n, then 2*d+1 is not prime. The places of 1's form sequence A045979.
If p is an odd prime and p^n is the side length of the odd leg of a primitive Pythagorean triangle (PPT) it constrains the other leg and hypotenuse to be (p^(2n)-1)/2 and (p^(2n)+1)/2 and the area to be (p^n-1)p^n(p^n+1)/4. Now consider the term (p^n-1)p^n(p^n+1): it must at least be divisible by 24 for all odd primes p because the area of a PPT is divisible by 6 (see A127922 for n=1). a(n) equals the common divisor of the term (p^n-1)p^n(p^n+1)/24 for all odd primes p. - Frank M Jackson, Dec 09 2017

Examples

			Let n=6. Since 2*6+1=13 is prime, the max p that should be considered is 13. We have
  (a(6))_2  = (a(6))_3 = 1,
  (a(6))_5  = (12/4)_5 + 1 = 1,
  (a(6))_7  = (12/6)_7 + 1 = 1,
  (a(6))_13 = (12/12)_13 + 1 = 1.
Thus a(6) = 2*3*5*7*13 = 2730.
		

Crossrefs

Programs

  • Mathematica
    Table[Numerator[Exp[Re[Limit[Zeta[s] (Zeta[-1]^(s - 1) - Zeta[-(2*n - 1)]^(s - 1)), s -> 1]]]], {n, 1, 54}] (* Mats Granvik, Feb 05 2016 *)
    Table[(lst=Table[p=Prime[m+1]; (p^n-1)p^n(p^n+1), {m, 1, 10}]; GCD@@lst/24), {n, 1, 100}] (* Frank M Jackson, Dec 09 2017 *)
    a[n_] := Product[p^Sum[Floor[(n-1)/((p-1) p^k)], {k, 0, n}], {p, Prime[Range[n]]}]; Array[a[2#+1]/(24 a[2#-1]) &, 100] (* using Jean-François Alcover's program A053657 *)(* Frank M Jackson, Dec 16 2017 *)
  • PARI
    a(n) = {my(r = 1); forprime(p=2, 2*n+1, if (p<=3, r *= p^valuation(n, p), if (! (2*n % (p-1)), r *= p^(1+valuation((2*n)/(p-1), p))););); r;} \\ Michel Marcus, Feb 06 2016

Formula

a(n) = (1/24)*b(2n+1)/b(2n-1), where b(n) = A053657(n).
a(p) = A002445(p)/6, for prime p >= 5.
a(n) = numerator of e^(real(lim_{s -> 1} (zeta(s)*(zeta(-1)^(s-1) - zeta(-(2*n-1))^(s-1))))). - Mats Granvik, Feb 05 2016
a(n) = A036283(n)/6. - Hugo Pfoertner, Dec 18 2022

A161741 Fifth right hand column of the RSEG2 triangle A161739.

Original entry on oeis.org

-4, -14, 1561, 25809, 218769, 1284261, 5885671, 22482031, 74581507, 220977757, 596666070, 1490430630, 3484310310, 7693206894, 16160890914, 32492871698, 62838521438, 117376191548, 212507783895, 374035542815, 641676187295, 1075368660795, 1763954792145
Offset: 1

Views

Author

Johannes W. Meijer and Nico Baken (n.h.g.baken(AT)tudelft.nl), Jun 18 2009

Keywords

Crossrefs

Equals fifth right hand column of A161739 (RSEG2 triangle).
Other right hand columns are A000292, A107963, A161740.

Formula

a(n) = (n+5)*(n+4)*(n+3)*(n+2)*(n+1)*(n)*(175*n^6+1365*n^5+2671*n^4-2805*n^3-14735*n^2-14445*n-2466)/5443200.
The denominator of a(n) (5443200) equals the product of the first four terms of A036283 (6*60*126*120). - Johannes W. Meijer, Oct 22 2009

A161740 Fourth right hand column of the RSEG2 triangle A161739.

Original entry on oeis.org

0, 30, 425, 3008, 14572, 55060, 174130, 481360, 1197196, 2733874, 5817955, 11668800, 22250280, 40616264, 71373956, 121292960, 200092040, 321439910, 504211037, 774042368, 1165242100, 1723107100, 2506711350, 3592233840
Offset: 1

Views

Author

Johannes W. Meijer & Nico Baken (n.h.g.baken(AT)tudelft.nl), Jun 18 2009

Keywords

Crossrefs

Equals fourth right hand column of A161739 (RSEG2 triangle).
Other right hand columns are A000292, A107963, A161741.

Formula

a(n) = (n+4)*(n+3)*(n+2)*(n+1)*(n)*(n-1)*(35*n^3+189*n^2+325*n+204)/45360
The denominator of a(n) (45360) equals the product of the first three terms of A036283 (6*60*126). - Johannes W. Meijer, Oct 22 2009

A195989 Quotient of denominators of (BernoulliB(2n)/n) and BernoulliB(2n).

Original entry on oeis.org

1, 2, 3, 4, 1, 6, 1, 8, 9, 10, 1, 12, 1, 2, 3, 16, 1, 18, 1, 20, 21, 2, 1, 24, 1, 2, 27, 4, 1, 30, 1, 32, 3, 2, 1, 36, 1, 2, 3, 40, 1, 42, 1, 4, 9, 2, 1, 48, 1, 50, 3, 4, 1, 54, 11, 8, 3, 2, 1, 60, 1, 2, 63, 64, 1, 6, 1, 4, 3, 10, 1, 72, 1, 2, 3, 4, 1, 78, 1, 80, 81, 2, 1, 84
Offset: 1

Views

Author

Paul Curtz, Dec 21 2012

Keywords

Comments

The fixed points (entries equal to their index) are 1, 2, 3, 4, 6, 8, 9, 10, 12, 16, 18, 20, 21, 24, 27, 30, 32, 36, 40, 42,... See A193267.
Are the indices of the 1's, that is 1, 5, 7, 11, 13,... , the sequence A069040 (checked to be true for their first 700 entries)? This provides another link between the Bernoulli numbers.
a(10*k) = 10, 20, 30, 40, 50, 60, 10, 70, 80, 90, 100,... for k= 1, 2, 3,....

Examples

			a(1) = 6/6 =1, a(2) = 60/30 =2, a(3) =126/42 =3, a(4) = 120/30 =4, a(5) = 66/66 =1.
		

Programs

  • Magma
    [Denominator(Bernoulli(2*n)/n)/Denominator(Bernoulli(2*n)): n in [1..100]]; // Vincenzo Librandi, Mar 12 2018
  • Maple
    A195989 := proc(n)
        q1 := denom(bernoulli(2*n)/n) ;
        q2 := denom(bernoulli(2*n)) ;
        q1/q2 ;
    end proc: # R. J. Mathar, Jan 06 2013
    # Alternatively, without Bernoulli numbers:
    A195989 := proc(n) local P, F, f, divides; divides := (a,b) -> is(irem(b,a) = 0):
    P := 1; F := ifactors(2*n)[2]; for f in F do if not divides(f[1]-1, 2*n) then
    P := P*f[1]^f[2] fi od; n/P end: seq(A195989(n),n=1..84); # Peter Luschny, Mar 12 2018
  • Mathematica
    a[n_] := Denominator[ BernoulliB[2*n]/n] / Denominator[ BernoulliB[2*n]]; Table[a[n], {n, 1, 84}] (* Jean-François Alcover, Jan 04 2013 *)
  • PARI
    a(n) = my(b=bernfrac(2*n)); denominator(b/n)/denominator(b); \\ Michel Marcus, Mar 12 2018
    

Formula

a(n) = A193267(2*n)/2 = A036283(n) / A002445(n).
a(n) = n/A300711(n). - Peter Luschny, Mar 12 2018
2a(n) is the product over all prime powers p^e, where p^e is the highest power of p dividing 2n and p-1 divides 2n. - Peter Luschny, Mar 12 2018
Showing 1-10 of 12 results. Next