A036283
Write cosec x = 1/x + Sum e_n x^(2n-1)/(2n-1)!; sequence gives denominators of e_n.
Original entry on oeis.org
6, 60, 126, 120, 66, 16380, 6, 4080, 7182, 3300, 138, 32760, 6, 1740, 42966, 8160, 6, 34545420, 6, 270600, 37926, 1380, 282, 1113840, 66, 3180, 21546, 3480, 354, 1703601900, 6, 16320, 194166, 60, 4686, 5043631320, 6, 60, 9954, 9200400, 498, 142981020, 6
Offset: 1
x^(-1)+1/6*x+7/360*x^3+31/15120*x^5+...
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 75 (4.3.68).
- Robert Israel, Table of n, a(n) for n = 1..10000
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 75 (4.3.68).
-
seq(denom((2^(2*n-1)-1)*bernoulli(2*n)/n),n=1..100); # Robert Israel, Oct 14 2016
-
a(n) = denominator((2^(2*n-1)-1)*bernfrac(2*n)/n) \\ Hugo Pfoertner, Dec 18 2022
A161739
The RSEG2 triangle.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 1, 4, 1, 0, 0, 13, 10, 1, 0, -4, 30, 73, 20, 1, 0, 0, -14, 425, 273, 35, 1, 0, 120, -504, 1561, 3008, 798, 56, 1, 0, 0, 736, -2856, 25809, 14572, 1974, 84, 1, 0, -12096, 44640, -73520, 125580, 218769, 55060, 4326, 120, 1
Offset: 0
The first few expressions for the ZG1[2*m-1,p+1] coefficients are:
ZG1[2*m-1, 1] = (zeta(2*m-1))/(1/2)
ZG1[2*m-1, 2] = (zeta(2*m-3) - zeta(2*m-1))/1
ZG1[2*m-1, 3] = (zeta(2*m-5) - 5*zeta(2*m-3) + 4*zeta(2*m-1))/6
ZG1[2*m-1, 4] = (zeta(2*m-7) - 14*zeta(2*m-5) + 49*zeta(2*m-3) - 36*zeta(2*m-1))/72
The first few rs(2*m,p) are (m >= p+2)
rs(2*m, p=0) = ZG1[2*m-1,1]
rs(2*m, p=1) = ZG1[2*m-1,1] + ZG1[2*m-1,2]
rs(2*m, p=2) = ZG1[2*m-1,1] + 3*ZG1[2*m-1,2] + 2*ZG1[2*m-1,3]
rs(2*m, p=3) = ZG1[2*m-1,1] + 7*ZG1[2*m-1,2] + 12*ZG1[2*m-1,3] + 6*ZG1[2*m-1,4]
The first few rs(2*m,p) are (m >= p+2)
rs(2*m, p=-1) = zeta(2*m+1)/(1/2)
rs(2*m, p=0) = zeta(2*m-1)/(1/2)
rs(2*m, p=1) = (zeta(2*m-1) + zeta(2*m-3))/1
rs(2*m, p=2) = (zeta(2*m-1) + 4*zeta(2*m-3) + zeta(2*m-5))/3
rs(2*m, p=3) = (0*zeta(2*m-1) + 13*zeta(2*m-3) + 10*zeta(2*m-5) + zeta(2*m-7))/12
The first few rows of the RSEG2 triangle are:
[1]
[0, 1]
[0, 1, 1]
[0, 1, 4, 1]
[0, 0, 13, 10, 1]
[0, -4, 30, 73, 20, 1]
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972, Chapter 23, pp. 811-812.
- J. W. Meijer and N.H.G. Baken, The Exponential Integral Distribution, Statistics and Probability Letters, Volume 5, No.3, April 1987. pp 209-211.
A008955 is a central factorial number triangle.
-
nmax:=10; for n from 0 to nmax do A008955(n, 0) := 1 end do: for n from 0 to nmax do A008955(n, n) := (n!)^2 end do: for n from 1 to nmax do for m from 1 to n-1 do A008955(n, m) := A008955(n-1, m-1)*n^2 + A008955(n-1, m) end do: end do: for n from 1 to nmax do A028246(n, 1) := 1 od: for n from 1 to nmax do A028246(n, n) := (n-1)! od: for n from 3 to nmax do for m from 2 to n-1 do A028246(n, m) := m*A028246(n-1, m) + (m-1)*A028246(n-1, m-1) od: od: for i from 0 to nmax-2 do s(i) := ((i+1)!/2)*sum(A028246(i+1, k1+1)*(sum((-1)^(j)*A008955(k1, j)*2*x^(2*nmax-(2*k1+1-2*j)), j=0..k1)/ (k1!*(k1+1)!)), k1=0..i) od: a(0,0) := 1: for n from 1 to nmax-1 do for m from 0 to n do a(n,m) := coeff(s(n-1), x, 2*nmax-1-2*m+2) od: od: seq(seq(a(n, m), m=0..n), n=0..nmax-1); for n from 0 to nmax-1 do seq(a(n, m), m=0..n) od;
m:=7: row := 2*m; rs(2*m, -2) := 2*eta(2*m+2); for p from -1 to m-2 do q(p+1) := (p+1)!/2 od: for p from -1 to m-2 do rs(2*m, p) := sum(a(p+1, k)*zeta(2*m+1-2*k), k=0..p+1)/q(p+1) od;
A161740
Fourth right hand column of the RSEG2 triangle A161739.
Original entry on oeis.org
0, 30, 425, 3008, 14572, 55060, 174130, 481360, 1197196, 2733874, 5817955, 11668800, 22250280, 40616264, 71373956, 121292960, 200092040, 321439910, 504211037, 774042368, 1165242100, 1723107100, 2506711350, 3592233840
Offset: 1
Equals fourth right hand column of
A161739 (RSEG2 triangle).
Showing 1-3 of 3 results.
Comments