A053657 a(n) = Product_{p prime} p^{ Sum_{k>=0} floor[(n-1)/((p-1)p^k)]}.
1, 2, 24, 48, 5760, 11520, 2903040, 5806080, 1393459200, 2786918400, 367873228800, 735746457600, 24103053950976000, 48206107901952000, 578473294823424000, 1156946589646848000, 9440684171518279680000, 18881368343036559360000, 271211974879377138647040000
Offset: 1
A036283 Write cosec x = 1/x + Sum e_n x^(2n-1)/(2n-1)!; sequence gives denominators of e_n.
6, 60, 126, 120, 66, 16380, 6, 4080, 7182, 3300, 138, 32760, 6, 1740, 42966, 8160, 6, 34545420, 6, 270600, 37926, 1380, 282, 1113840, 66, 3180, 21546, 3480, 354, 1703601900, 6, 16320, 194166, 60, 4686, 5043631320, 6, 60, 9954, 9200400, 498, 142981020, 6
Offset: 1
Comments
Denominator of [2^(2n-1) - 1] * Bernoulli(2n)/n.
Equals the denominators of the LS1[-2*m,n=1] matrix coefficients of A160487 for m = 1, 2, ... - Johannes W. Meijer, May 24 2009
The products of the first n terms of this sequence appear in the denominators of the a(n) formulas of the right hand columns of triangle A161739. See A000292 (n=1), A107963 (n=2), A161740 (n=3) and A161741 (n=4). The next six values of n show that this pattern persists. - Johannes W. Meijer, Oct 22 2009
Examples
x^(-1)+1/6*x+7/360*x^3+31/15120*x^5+...
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 75 (4.3.68).
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 75 (4.3.68).
Programs
-
Maple
seq(denom((2^(2*n-1)-1)*bernoulli(2*n)/n),n=1..100); # Robert Israel, Oct 14 2016
-
PARI
a(n) = denominator((2^(2*n-1)-1)*bernfrac(2*n)/n) \\ Hugo Pfoertner, Dec 18 2022
Formula
Apparently a(n) = 6*A202318(n). - Hugo Pfoertner, Dec 18 2022
Extensions
Title corrected and offset changed by Johannes W. Meijer, May 21 2009
More terms, and edited by Robert Israel, Oct 14 2016
A297402 a(n) = gcd_{k=1..n} (prime(k+1)^n-1)/2.
1, 4, 1, 8, 1, 4, 1, 16, 1, 4, 1, 8, 1, 4, 1, 32, 1, 4, 1, 8, 1, 4, 1, 16, 1, 4, 1, 8, 1, 4, 1, 64, 1, 4, 1, 8, 1, 4, 1, 16, 1, 4, 1, 8, 1, 4, 1, 32, 1, 4, 1, 8, 1, 4, 1, 16, 1, 4, 1, 8, 1, 4, 1, 128, 1, 4, 1, 8, 1, 4, 1, 16, 1, 4, 1, 8, 1, 4, 1, 32, 1, 4, 1, 8, 1, 4, 1, 16, 1, 4, 1, 8, 1, 4, 1, 64, 1, 4, 1, 8
Offset: 1
Comments
If p is an odd prime and p^n is the length of the odd leg of a primitive Pythagorean triangle it constrains the other leg and hypotenuse to be (p^(2n)-1)/2 and (p^(2n)+1)/2. The resulting triangle has a semiperimeter of p^n(p^n+1)/2, an area of (p^n-1)p^n(p^n+1)/4 and an inradius of (p^n-1)/2. a(n) equals the GCD of the inradius terms (p^n-1)/2 for at least the first n odd primes.
Conjecture: a(n) equals the GCD of the inradius terms (p^n-1)/2 for all odd primes, i.e. a(n) = GCD_{k=1..oo} (prime(k+1)^n-1)/2.
From David A. Corneth, Dec 29 2017: (Start)
All terms are powers of 2. Proof: suppose p | a(n) for some odd prime p. Then p | (p^n - 1) / 2 and so p | (p^n - 1) which isn't the case.
If n is odd then a(n) = 1. Proof: 2 | (p^k - 1) for all k and odd primes p. 3^n - 1 = 3 * 9^k - 1 = 3 - 1 = 2 (mod 4), so 3^n - 1 is of the form 2*m for some odd m, hence the GCD of all (p^n - 1) / 2 is 1 for odd n. (End)
This is the even bisection of A059159. - Rémy Sigrist, Dec 30 2017
a(n) is the size of the group Z_2*/(Z_2*)^n, where Z_2 is the ring of 2-adic integers. We have that Z_2*/(Z_2*)^n is the inverse limit of (Z/2^iZ)*/((Z/2^iZ)*)^n as i tends to infinity. If n is odd, then the group is trivial. If n = 2^e * n' is even, where n' is odd, then the group is the product of a cyclic group of order 2^e and a cyclic group of order 2. See A370050. - Jianing Song, May 12 2024
Examples
a(4)=8 because for n=4 and for the first 4 odd primes {3, 5, 7, 11}, the term (p^n-1)/2 gives {40, 312, 1200, 7320} with a GCD of 8.
Links
- Frank M Jackson, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
a[n_] := GCD @@ Array[(Prime[# +1]^n -1)/2 &, n]; Array[a, 90] (* slightly modified by Robert G. Wilson v, Jan 01 2018 *) a[n_] := If[EvenQ[n], 2^(FactorInteger[n][[1]][[2]] + 1), 1]; Array[a, 90] (* Frank M Jackson, Jul 28 2018 *)
-
PARI
a(n) = gcd(vector(n, i, (prime(i+1)^n-1)/2)) \\ Iain Fox, Dec 29 2017
-
PARI
a(n)=if(n%2,1,2)<
Charles R Greathouse IV, Jan 06 2018
Formula
It appears that for k > 0, a(2^k) = 2^(k+1).
a(n) = A006519(2n) for even n and a(n) = 1 for odd n. - David A. Corneth, Dec 29 2017
Multiplicative with a(2^e) = 2^(e+1), a(p^e) = 1 for odd prime p. - Andrew Howroyd, Jul 25 2018
It appears that for m > 0, a(2m-1) = 1 (proved in comments) and a(2m) = 2^(k+1) where k is the exponent of the even prime in the prime factorization of 2m. - Frank M Jackson, Jul 28 2018
From Amiram Eldar, Nov 24 2023: (Start)
Dirichlet g.f.: zeta(s) * (1 + 1/2^s + 1/(2^(s-1) - 1)).
Sum_{k=1..n} a(k) ~ (n/log(2)) * (log(n) + gamma + log(2) - 1), where gamma is Euler's constant (A001620). (End)
A358625 a(n) = numerator of Bernoulli(n, 1) / n for n >= 1, a(0) = 1.
1, 1, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -691, 0, 1, 0, -3617, 0, 43867, 0, -174611, 0, 77683, 0, -236364091, 0, 657931, 0, -3392780147, 0, 1723168255201, 0, -7709321041217, 0, 151628697551, 0, -26315271553053477373, 0, 154210205991661, 0, -261082718496449122051
Offset: 0
Comments
The rational numbers r(n) = Bernoulli(n, 1) / n are called the 'divided Bernoulli numbers'. r(n) is a p-integer for all primes p if p - 1 does not divide n. This is sometimes called 'Adams's theorem' (Ireland and Rosen). The important Kummer congruences for the Bernoulli numbers (1851) are stated in terms of the r(n).
Examples
Rationals: 1, 1/2, 1/12, 0, -1/120, 0, 1/252, 0, -1/240, 0, 1/132, ... Note that a(68) = -4633713579924631067171126424027918014373353 but A120082(68) = -125235502160125163977598011460214000388469.
References
- Kenneth Ireland and Michael Rosen, A classical introduction to modern number theory, Vol. 84, Graduate Texts in Mathematics, Springer-Verlag, 2nd edition, 1990. [Prop. 15.2.4, p. 238]
Links
- Peter Luschny, Table of n, a(n) for n = 0..300
- Arnold Adelberg, Shaofang Hong and Wenli Ren, Bounds of Divided Universal Bernoulli Numbers and Universal Kummer Congruences, Proceedings of the American Mathematical Society, Vol. 136(1), 2008, p. 61-71.
- Bernd C. Kellner, The structure of Bernoulli numbers, arXiv:math/0411498 [math.NT], 2004.
Crossrefs
Programs
-
GAP
Concatenation([1, 1], List([2..45], n-> NumeratorRat(Bernoulli(n)/(n)))); # G. C. Greubel, Sep 19 2019
-
Magma
[1, 1] cat [Numerator(Bernoulli(n)/(n)): n in [2..45]]; // G. C. Greubel, Sep 19 2019
-
Maple
A358625 := n -> ifelse(n = 0, 1, numer(bernoulli(n, 1) / n)): seq(A358625(n), n = 0.. 40); # Alternative: egf := 1 + x + log(1 - exp(-x)) - log(x): ser := series(egf, x, 42): seq(numer(n! * coeff(ser, x, n)), n = 0..40);
-
Mathematica
Join[{1, 1}, Table[Numerator[BernoulliB[n] / n], {n, 2, 45}]]
-
PARI
a(n) = if (n<=1, 1, numerator(bernfrac(n)/n)); \\ Michel Marcus, Feb 24 2015
Formula
a(n) = numerator(n! * [x^n](1 + x + log(1 - exp(-x)) - log(x))).
a(n) = numerator(-zeta(1 - n)) for n >= 1.
a(n) = numerator(Euler(n-1, 1) / (2*(2^n - 1))) for n >= 1.
denominator(r(2*n)) = A006953(n) for n >= 1.
denominator(r(2*n)) / 2 = A036283(n) for n >= 1.
denominator(r(2*n)) / 12 = A202318(n) for n >= 1.
Comments
Examples
References
Links
Crossrefs
Programs
Maple
Mathematica
PARI
PARI
PARI
Formula
Extensions