cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A053657 a(n) = Product_{p prime} p^{ Sum_{k>=0} floor[(n-1)/((p-1)p^k)]}.

Original entry on oeis.org

1, 2, 24, 48, 5760, 11520, 2903040, 5806080, 1393459200, 2786918400, 367873228800, 735746457600, 24103053950976000, 48206107901952000, 578473294823424000, 1156946589646848000, 9440684171518279680000, 18881368343036559360000, 271211974879377138647040000
Offset: 1

Views

Author

Jean-Luc Chabert, Feb 16 2000

Keywords

Comments

LCM of denominators of the coefficients of x^n*z^k in {-log(1-x)/x}^z as k=0..n, as described by triangle A075264.
Denominators of integer-valued polynomials on prime numbers (with degree n): 1/a(n) is a generator of the ideal formed by the leading coefficients of integer-valued polynomials on prime numbers with degree less than or equal to n.
Also the least common multiple of the orders of all finite subgroups of GL_n(Q) [Minkowski]. Schur's notation for the sequence is M_n = a(n+1). - Martin Lorenz (lorenz(AT)math.temple.edu), May 18 2005
This sequence also occurs in algebraic topology where it gives the denominators of the Laurent polynomials forming a regular basis for K*K, the hopf algebroid of stable cooperations for complex K-theory. Several different equivalent formulas for the terms of the sequence occur in the literature. An early reference is K. Johnson, Illinois J. Math. 28(1), 1984, pp.57-63 where it occurs in lines 1-5, page 58. A summary of some of the other formulas is given in the appendix to K. Johnson, Jour. of K-theory 2(1), 2008, 123-145. - Keith Johnson (johnson(AT)mscs.dal.ca), Nov 03 2008
a(n) is divisible by n!, by Legendre's formula for the highest power of a prime that divides n!. Also, a(n) is divisible by (n+1)! if and only if n+1 is not prime. - Jonathan Sondow, Jul 23 2009
Triangle A163940 is related to the divergent series 1^m*1! - 2^m*2! + 3^m*3! - 4^m*4! + ... for m =>-1. The left hand columns of this triangle can be generated with the MC polynomials, see A163972. The Minkowski numbers appear in the denominators of these polynomials. - Johannes W. Meijer, Oct 16 2009
Unsigned Stirling numbers of the first kind as [s + k, k] (Karamata's notation) where k = {0, 1, 2, ...} and s is in general complex results in Pochhammer[s,k]*(integer coefficient polynomial of (k-1) degree in s) / M[k], where M[k] is the least common multiple of the orders of all finite groups of n x n-matrices over rational numbers (Minkowiski's theorem) which is sequence A053657. - Lorenz H. Menke, Jr., Feb 02 2010
From Peter Bala, Feb 21 2011: (Start)
Given a subset S of the integers Z, Bhargava has shown how to associate with S a generalized factorial function, denoted n!_S, which shares many properties of the classical factorial function n!.
The present sequence is the generalized factorial function n!S associated with the set of primes S = {2,3,5,7,...}. The associated generalized exponential function E(x) = Sum{n>=1} x^(n-1)/a(n) vanishes at x = -2: i.e. Sum_{n>=1} (-2)^n/a(n) = 0.
For the table of associated generalized binomial coefficients n!_S/(k!_S*(n-k)!_S) see A186430.
This sequence is related to the Bernoulli polynomials in two ways [Chabert and Cahen]:
(1) a(n) = (n-1)!*A001898(n-1).
(2) (t/(exp(t)-1))^x = sum {n = 0..inf} P(n,x)*t^n/a(n+1),
where the P(n,x) are primitive polynomials in the ring Z[x].
If p_1,...,p_n are any n primes then the product of their pairwise differences Product_{i
(End)
LCM of denominators of the coefficients of S(m+n-1,m) as polynomial in m of degree 2*(n-1), as described by triangle A202339. - Vladimir Shevelev, Dec 17 2011
Sometimes called "Minkowski numbers" (e.g., by Guralnick and Lorenz), after the German mathematician Hermann Minkowski (1864-1909). - Amiram Eldar, Aug 24 2024

Examples

			a(7)=24^3*Product_{i=1..3} A202318(i)=24^3*1*10*21=2903040. - _Vladimir Shevelev_, Dec 17 2011
		

References

  • Jean-Luc Chabert, Scott T. Chapman, and William W. Smith, A basis for the ring of polynomials integer-valued on prime numbers, in: Daniel Anderson (ed.), Factorization in integral domains, Lecture Notes in Pure and Appl. Math. 189, Dekker, New York, 1997.

Crossrefs

a(n) = n!*A163176(n). - Jonathan Sondow, Jul 23 2009
Cf. A202318.
Appears in A163972. - Johannes W. Meijer, Oct 16 2009

Programs

  • Maple
    A053657 := proc(n) local P,p,q,s,r;
    P := select(isprime,[$2..n]); r:=1;
    for p in P do s := 0; q := p-1;
    do if q > (n-1) then break fi;
    s := s + iquo(n-1,q); q := q*p; od;
    r := r * p^s; od; r end: # Peter Luschny, Jul 26 2009
    ser := series((y/(exp(y)-1))^x, y, 20): a := n -> denom(coeff(ser, y, n-1)):
    seq(a(n), n=1..19); # Peter Luschny, May 13 2019
  • Mathematica
    m = 16; s = Expand[Normal[Series[(-Log[1-x]/x)^z, {x, 0, m}]]];
    a[n_, k_] := Denominator[ Coefficient[s, x^n*z^k]];
    Prepend[Apply[LCM, Table[a[n,k], {n,m}, {k,n}], {1}], 1]
    (* Jean-François Alcover, May 31 2011 *)
    a[n_] := Product[p^Sum[Floor[(n-1)/((p-1) p^k)], {k, 0, n}], {p, Prime[ Range[n] ]}]; Array[a, 30] (* Jean-François Alcover, Nov 22 2016 *)
  • PARI
    {a(n)=local(X=x+x^2*O(x^n),D);D=1;for(j=0,n-1,D=lcm(D,denominator( polcoeff(polcoeff((-log(1-X)/x)^z+z*O(z^j),j,z),n-1,x))));return(D)} /* Paul D. Hanna, Jun 27 2005 */
    
  • PARI
    {a(n)=prod(i=1,#factor(n!)~,prime(i)^sum(k=0,#binary(n), floor((n-1)/((prime(i)-1)*prime(i)^k))))} /* Paul D. Hanna, Jun 27 2005 */
    
  • PARI
    S(n, p) = {
         my(acc = 0, tmp = p-1);
         while (tmp < n, acc += floor((n-1)/tmp); tmp *= p);
         return(acc);
    };
    a(n) = {
         my(rv = 1);
         forprime(p = 2, n, rv *= p^S(n,p));
         return(rv);
    };
    vector(17, i, a(i))  \\ Gheorghe Coserea, Aug 24 2015

Formula

a(2n) = 2*a(2n-1). - Jonathan Sondow, Jul 23 2009
a(2*n+1) = 24^n * Product_{i=1..n} A202318(i). - Vladimir Shevelev, Dec 17 2011
For n>=0, A007814(a(n+1)) = n+A007814(n!). - Vladimir Shevelev, Dec 28 2011
a(n) = denominator([y^(n-1)] (y/(exp(y)-1))^x). - Peter Luschny, May 13 2019
Sum_{n>=1} 1/a(n) = A346046. - Amiram Eldar, Jul 02 2023

Extensions

More terms from Paul D. Hanna, Jun 27 2005

A036283 Write cosec x = 1/x + Sum e_n x^(2n-1)/(2n-1)!; sequence gives denominators of e_n.

Original entry on oeis.org

6, 60, 126, 120, 66, 16380, 6, 4080, 7182, 3300, 138, 32760, 6, 1740, 42966, 8160, 6, 34545420, 6, 270600, 37926, 1380, 282, 1113840, 66, 3180, 21546, 3480, 354, 1703601900, 6, 16320, 194166, 60, 4686, 5043631320, 6, 60, 9954, 9200400, 498, 142981020, 6
Offset: 1

Keywords

Comments

Denominator of [2^(2n-1) - 1] * Bernoulli(2n)/n.
Equals the denominators of the LS1[-2*m,n=1] matrix coefficients of A160487 for m = 1, 2, ... - Johannes W. Meijer, May 24 2009
The products of the first n terms of this sequence appear in the denominators of the a(n) formulas of the right hand columns of triangle A161739. See A000292 (n=1), A107963 (n=2), A161740 (n=3) and A161741 (n=4). The next six values of n show that this pattern persists. - Johannes W. Meijer, Oct 22 2009

Examples

			x^(-1)+1/6*x+7/360*x^3+31/15120*x^5+...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 75 (4.3.68).

Programs

  • Maple
    seq(denom((2^(2*n-1)-1)*bernoulli(2*n)/n),n=1..100); # Robert Israel, Oct 14 2016
  • PARI
    a(n) = denominator((2^(2*n-1)-1)*bernfrac(2*n)/n) \\ Hugo Pfoertner, Dec 18 2022

Formula

Apparently a(n) = 6*A202318(n). - Hugo Pfoertner, Dec 18 2022

Extensions

Title corrected and offset changed by Johannes W. Meijer, May 21 2009
More terms, and edited by Robert Israel, Oct 14 2016

A297402 a(n) = gcd_{k=1..n} (prime(k+1)^n-1)/2.

Original entry on oeis.org

1, 4, 1, 8, 1, 4, 1, 16, 1, 4, 1, 8, 1, 4, 1, 32, 1, 4, 1, 8, 1, 4, 1, 16, 1, 4, 1, 8, 1, 4, 1, 64, 1, 4, 1, 8, 1, 4, 1, 16, 1, 4, 1, 8, 1, 4, 1, 32, 1, 4, 1, 8, 1, 4, 1, 16, 1, 4, 1, 8, 1, 4, 1, 128, 1, 4, 1, 8, 1, 4, 1, 16, 1, 4, 1, 8, 1, 4, 1, 32, 1, 4, 1, 8, 1, 4, 1, 16, 1, 4, 1, 8, 1, 4, 1, 64, 1, 4, 1, 8
Offset: 1

Author

Frank M Jackson, Dec 29 2017

Keywords

Comments

If p is an odd prime and p^n is the length of the odd leg of a primitive Pythagorean triangle it constrains the other leg and hypotenuse to be (p^(2n)-1)/2 and (p^(2n)+1)/2. The resulting triangle has a semiperimeter of p^n(p^n+1)/2, an area of (p^n-1)p^n(p^n+1)/4 and an inradius of (p^n-1)/2. a(n) equals the GCD of the inradius terms (p^n-1)/2 for at least the first n odd primes.
Conjecture: a(n) equals the GCD of the inradius terms (p^n-1)/2 for all odd primes, i.e. a(n) = GCD_{k=1..oo} (prime(k+1)^n-1)/2.
From David A. Corneth, Dec 29 2017: (Start)
All terms are powers of 2. Proof: suppose p | a(n) for some odd prime p. Then p | (p^n - 1) / 2 and so p | (p^n - 1) which isn't the case.
If n is odd then a(n) = 1. Proof: 2 | (p^k - 1) for all k and odd primes p. 3^n - 1 = 3 * 9^k - 1 = 3 - 1 = 2 (mod 4), so 3^n - 1 is of the form 2*m for some odd m, hence the GCD of all (p^n - 1) / 2 is 1 for odd n. (End)
This is the even bisection of A059159. - Rémy Sigrist, Dec 30 2017
a(n) is the size of the group Z_2*/(Z_2*)^n, where Z_2 is the ring of 2-adic integers. We have that Z_2*/(Z_2*)^n is the inverse limit of (Z/2^iZ)*/((Z/2^iZ)*)^n as i tends to infinity. If n is odd, then the group is trivial. If n = 2^e * n' is even, where n' is odd, then the group is the product of a cyclic group of order 2^e and a cyclic group of order 2. See A370050. - Jianing Song, May 12 2024

Examples

			a(4)=8 because for n=4 and for the first 4 odd primes {3, 5, 7, 11}, the term (p^n-1)/2 gives {40, 312, 1200, 7320} with a GCD of 8.
		

Programs

  • Mathematica
    a[n_] := GCD @@ Array[(Prime[# +1]^n -1)/2 &, n]; Array[a, 90] (* slightly modified by Robert G. Wilson v, Jan 01 2018 *)
    a[n_] := If[EvenQ[n], 2^(FactorInteger[n][[1]][[2]] + 1), 1]; Array[a, 90] (* Frank M Jackson, Jul 28 2018 *)
  • PARI
    a(n) = gcd(vector(n, i, (prime(i+1)^n-1)/2)) \\ Iain Fox, Dec 29 2017
    
  • PARI
    a(n)=if(n%2,1,2)<Charles R Greathouse IV, Jan 06 2018

Formula

It appears that for k > 0, a(2^k) = 2^(k+1).
a(n) = A006519(2n) for even n and a(n) = 1 for odd n. - David A. Corneth, Dec 29 2017
a(n) = A074723(n)/2. - Iain Fox, Dec 30 2017
Multiplicative with a(2^e) = 2^(e+1), a(p^e) = 1 for odd prime p. - Andrew Howroyd, Jul 25 2018
It appears that for m > 0, a(2m-1) = 1 (proved in comments) and a(2m) = 2^(k+1) where k is the exponent of the even prime in the prime factorization of 2m. - Frank M Jackson, Jul 28 2018
From Amiram Eldar, Nov 24 2023: (Start)
Dirichlet g.f.: zeta(s) * (1 + 1/2^s + 1/(2^(s-1) - 1)).
Sum_{k=1..n} a(k) ~ (n/log(2)) * (log(n) + gamma + log(2) - 1), where gamma is Euler's constant (A001620). (End)

A358625 a(n) = numerator of Bernoulli(n, 1) / n for n >= 1, a(0) = 1.

Original entry on oeis.org

1, 1, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -691, 0, 1, 0, -3617, 0, 43867, 0, -174611, 0, 77683, 0, -236364091, 0, 657931, 0, -3392780147, 0, 1723168255201, 0, -7709321041217, 0, 151628697551, 0, -26315271553053477373, 0, 154210205991661, 0, -261082718496449122051
Offset: 0

Author

Peter Luschny, Dec 02 2022

Keywords

Comments

The rational numbers r(n) = Bernoulli(n, 1) / n are called the 'divided Bernoulli numbers'. r(n) is a p-integer for all primes p if p - 1 does not divide n. This is sometimes called 'Adams's theorem' (Ireland and Rosen). The important Kummer congruences for the Bernoulli numbers (1851) are stated in terms of the r(n).

Examples

			Rationals: 1, 1/2, 1/12, 0, -1/120, 0, 1/252, 0, -1/240, 0, 1/132, ...
Note that a(68) = -4633713579924631067171126424027918014373353 but A120082(68) = -125235502160125163977598011460214000388469.
		

References

  • Kenneth Ireland and Michael Rosen, A classical introduction to modern number theory, Vol. 84, Graduate Texts in Mathematics, Springer-Verlag, 2nd edition, 1990. [Prop. 15.2.4, p. 238]

Crossrefs

Programs

  • GAP
    Concatenation([1, 1], List([2..45], n-> NumeratorRat(Bernoulli(n)/(n)))); # G. C. Greubel, Sep 19 2019
  • Magma
    [1, 1] cat [Numerator(Bernoulli(n)/(n)): n in [2..45]]; // G. C. Greubel, Sep 19 2019
    
  • Maple
    A358625 := n -> ifelse(n = 0, 1, numer(bernoulli(n, 1) / n)):
    seq(A358625(n), n = 0.. 40);
    # Alternative:
    egf := 1 + x + log(1 - exp(-x)) - log(x): ser := series(egf, x, 42):
    seq(numer(n! * coeff(ser, x, n)), n = 0..40);
  • Mathematica
    Join[{1, 1}, Table[Numerator[BernoulliB[n] / n], {n, 2, 45}]]
  • PARI
    a(n) = if (n<=1, 1, numerator(bernfrac(n)/n)); \\ Michel Marcus, Feb 24 2015
    

Formula

a(n) = numerator(n! * [x^n](1 + x + log(1 - exp(-x)) - log(x))).
a(n) = numerator(-zeta(1 - n)) for n >= 1.
a(n) = numerator(Euler(n-1, 1) / (2*(2^n - 1))) for n >= 1.
denominator(r(2*n)) = A006953(n) for n >= 1.
denominator(r(2*n)) / 2 = A036283(n) for n >= 1.
denominator(r(2*n)) / 12 = A202318(n) for n >= 1.
denominator(r(2*n)) = (1/2) * A053657(2*n+1) / A053657(2*n-1) for n >= 1.
Showing 1-4 of 4 results.