cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A036280 Numerators in Taylor series for x * cosec(x).

Original entry on oeis.org

1, 1, 7, 31, 127, 73, 1414477, 8191, 16931177, 5749691557, 91546277357, 3324754717, 1982765468311237, 22076500342261, 65053034220152267, 925118910976041358111, 16555640865486520478399, 8089941578146657681, 29167285342563717499865628061
Offset: 0

Views

Author

Keywords

Comments

These are also the numerators of the coefficients appearing in the Maclaurin summation formula (which might be called the 'Maclaurin numbers') (see Gould & Squire, p. 45). - Peter Luschny, Feb 20 2016

Examples

			cosec(x) = x^(-1) + (1/6)*x + (7/360)*x^3 + (31/15120)*x^5 + ...
1, 1/6, 7/360, 31/15120, 127/604800, 73/3421440, 1414477/653837184000, 8191/37362124800, ...
		

References

  • G. W. Caunt, Infinitesimal Calculus, Oxford Univ. Press, 1914, p. 477.

Crossrefs

Programs

  • Maple
    series(x*csc(x),x,60);
    seq(numer((-1)^n*bernoulli(2*n,1/2)/(2*n)!), n=0..30); # Robert Israel, Mar 21 2016
  • Mathematica
    nn = 34; t = Numerator[CoefficientList[Series[x*Csc[x], {x, 0, nn}], x]*Range[0, nn]!]; Take[t, {1, nn-1, 2}] (* T. D. Noe, Oct 28 2013 *)
  • Maxima
    a(n):=num(sum(sum((2^(1-j)*(-1)^(n+j-1)*binomial(k,j)*sum((j-2*i)^(2*n+j-2)*binomial(j,i)*(-1)^(i),i,0,floor(j/2)))/(2*n+j-2)!,j,1,k),k,1,2*n-2)); /* n>1. a(1)=1. */ /* Vladimir Kruchinin, Apr 12 2011 */
    
  • Maxima
    a(n):=(sum((sum(binomial(j,2*k-1)*(j-1)!*2^(1-j)*(-1)^(n+1+j)*stirling2(2*n+1,j),j,2*k-1,2*n+1))/(2*k-1),k,1,n+1))/(2*n)!;
    /* Vladimir Kruchinin, Mar 21 2016 */
    
  • PARI
    a(n)=numerator(sum(k=1,n,sum(j=0,k/2,binomial(3*n,n-k)*(-1)^(n+j)*(2*j-k)^(2*n+k)*2^(n+1-k)*(n+1)!/(j!*(k-j)!*(k+1))))/((3*n)!*2^n))+(n==0) \\ Tani Akinari, Feb 22 2025
    
  • PARI
    my(x='x+O('x^40), v=apply(numerator, Vec(x/sin(x)))); vector(#v\2, k, v[2*k-1]) \\ Michel Marcus, Feb 23 2025
  • Sage
    def A036280_list(len):
        R, C = [1], [1]+[0]*(len-1)
        for n in (1..len-1):
            for k in range(n, 0, -1):
                C[k] = -C[k-1] / (8*k*(2*k+1))
            C[0] = -sum(C[k] for k in (1..n))
            R.append(C[0].numerator())
        return R
    print(A036280_list(19)) # Peter Luschny, Feb 20 2016
    

Formula

Numerator of Sum_{k=1..2*n-2} Sum_{j=1..k} 2^(1-j)*(-1)^(n+j-1) * binomial(k,j) * Sum_{i=0..floor(j/2)} (j-2*i)^(2*n+j-2) * binomial(j,i) * (-1)^i/(2*n+j-2)!, n > 1. - Vladimir Kruchinin, Apr 12 2011
E.g.f.: x/sin(x) = 1 + (x^2/(6-x^2))*T(0), where T(k) = 1 - x^2*(2*k+2)*(2*k+3)/( x^2*(2*k+2)*(2*k+3) + ((2*k+2)*(2*k+3) - x^2)*((2*k+4)*(2*k+5) - x^2)/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 25 2013
a(n) = numerator((-1)^n*B(2*n,1/2)/(2*n)!) where B(n,x) denotes the Bernoulli polynomial. - Peter Luschny, Feb 20 2016
a(n) = numerator(Sum_{k=1..n+1}((Sum_{j=2*k-1..2*n+1}(binomial(j,2*k-1)*(j-1)!*2^(1-j)*(-1)^(n+1+j)*stirling2(2*n+1,j)))/(2*k-1))/(2*n)!). - Vladimir Kruchinin, Mar 21 2016
a(n) = numerator(eta(2*n)/Pi^(2*n)), where eta(n) is the Dirichlet eta function. See A230265 for denominator. - Mohammed Yaseen, Aug 02 2023
a(n) = numerator((Sum_{k=1..n} Sum_{j=0..floor(k/2)} binomial(3*n,n-k)*(-1)^(n+j)*(2*j-k)^(2*n+k)*2^(n+1-k)*(n+1)!/(j!*(k-j)!*(k+1)))/((3*n)!*2^n)) for n > 0. - Tani Akinari, Feb 22 2025

A036282 Write cosec x = 1/x + Sum_{n>=1} e_n * x^(2n-1)/(2n-1)!; sequence gives numerators of e_n.

Original entry on oeis.org

1, 7, 31, 127, 511, 1414477, 8191, 118518239, 5749691557, 91546277357, 162912981133, 1982765468311237, 22076500342261, 455371239541065869, 925118910976041358111, 16555640865486520478399, 1302480594081611886641, 904185845619475242495834469891
Offset: 1

Views

Author

Keywords

Comments

From Johannes W. Meijer, May 24 2009: (Start)
Absolute value of numerator of [2^(2n-1) - 1] * Bernoulli(2n)/n.
Equals the absolute values of the numerators of the LS1[ -2*m,n=1] matrix coefficients of A160487 for m = 1, 2, .. ,.
(End)

Examples

			cosec x
= x^(-1) + 1/6*x + 7/360*x^3 + 31/15120*x^5 + ...
= x^(-1) + 1/6 * x/1! + 7/60 * x^3/3! + 31/126 * x^5/5! + ...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 75 (4.3.68).

Crossrefs

Cf. A160487.
Differs from A282898.

Programs

  • Maple
    a:= n-> (m-> numer(coeff(series(csc(x), x, m+1), x, m)*m!))(2*n-1):
    seq(a(n), n=1..20);  # Alois P. Heinz, Jun 21 2018
  • Mathematica
    a[n_] := Abs[ Numerator[ (2^(2*n-1)-1) * BernoulliB[2*n]/n ] ]; Table[a[n], {n, 1, 18}] (* Jean-François Alcover, May 31 2013, after Johannes W. Meijer *)
  • PARI
    a(n) = abs(numerator((2^(2*n-1)-1)*bernfrac(2*n)/n)); \\ Michel Marcus, Mar 01 2015

Extensions

Title corrected and offset changed by Johannes W. Meijer, May 21 2009

A230265 Denominators of eta(2*n)/Pi^(2*n), where eta(n) is the Dirichlet eta function.

Original entry on oeis.org

2, 12, 720, 30240, 1209600, 6842880, 1307674368000, 74724249600, 1524374691840000, 5109094217170944000, 802857662698291200000, 287777551824322560000, 1693824136731743669452800000, 186134520519971831808000000
Offset: 0

Views

Author

Arkadiusz Wesolowski, Oct 14 2013

Keywords

Comments

The first 5 terms of this sequence are the same as in A060055.

Crossrefs

Numerators give A036280.

Programs

  • PARI
    for(n=0, 7, print1(2*denominator(polcoeff(Ser(1/sin(x)), 2*n-1)), ", "));

Formula

a(n) = A036280(n)*Pi^(2*n)/(zeta(2*n)*(1 - 2^(1-2*n))).
a(n) = denominator((-1)^(n+1)*BernoulliB(2*n)*(2^(2*n-1) - 1)/(2*n)!).
a(n) = 2*A036281(n).

A165641 A091137(n) / A001316(n) .

Original entry on oeis.org

1, 1, 6, 6, 360, 360, 15120, 15120, 1814400, 1814400, 119750400, 119750400, 653837184000, 653837184000, 3923023104000, 3923023104000, 16005934264320000, 16005934264320000, 12772735542927360000, 12772735542927360000, 8430005458332057600000, 8430005458332057600000
Offset: 0

Views

Author

Paul Curtz, Sep 23 2009

Keywords

Crossrefs

Extensions

Edited and extended by R. J. Mathar, Sep 25 2009
Showing 1-4 of 4 results.