cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A036280 Numerators in Taylor series for x * cosec(x).

Original entry on oeis.org

1, 1, 7, 31, 127, 73, 1414477, 8191, 16931177, 5749691557, 91546277357, 3324754717, 1982765468311237, 22076500342261, 65053034220152267, 925118910976041358111, 16555640865486520478399, 8089941578146657681, 29167285342563717499865628061
Offset: 0

Views

Author

Keywords

Comments

These are also the numerators of the coefficients appearing in the Maclaurin summation formula (which might be called the 'Maclaurin numbers') (see Gould & Squire, p. 45). - Peter Luschny, Feb 20 2016

Examples

			cosec(x) = x^(-1) + (1/6)*x + (7/360)*x^3 + (31/15120)*x^5 + ...
1, 1/6, 7/360, 31/15120, 127/604800, 73/3421440, 1414477/653837184000, 8191/37362124800, ...
		

References

  • G. W. Caunt, Infinitesimal Calculus, Oxford Univ. Press, 1914, p. 477.

Crossrefs

Programs

  • Maple
    series(x*csc(x),x,60);
    seq(numer((-1)^n*bernoulli(2*n,1/2)/(2*n)!), n=0..30); # Robert Israel, Mar 21 2016
  • Mathematica
    nn = 34; t = Numerator[CoefficientList[Series[x*Csc[x], {x, 0, nn}], x]*Range[0, nn]!]; Take[t, {1, nn-1, 2}] (* T. D. Noe, Oct 28 2013 *)
  • Maxima
    a(n):=num(sum(sum((2^(1-j)*(-1)^(n+j-1)*binomial(k,j)*sum((j-2*i)^(2*n+j-2)*binomial(j,i)*(-1)^(i),i,0,floor(j/2)))/(2*n+j-2)!,j,1,k),k,1,2*n-2)); /* n>1. a(1)=1. */ /* Vladimir Kruchinin, Apr 12 2011 */
    
  • Maxima
    a(n):=(sum((sum(binomial(j,2*k-1)*(j-1)!*2^(1-j)*(-1)^(n+1+j)*stirling2(2*n+1,j),j,2*k-1,2*n+1))/(2*k-1),k,1,n+1))/(2*n)!;
    /* Vladimir Kruchinin, Mar 21 2016 */
    
  • PARI
    a(n)=numerator(sum(k=1,n,sum(j=0,k/2,binomial(3*n,n-k)*(-1)^(n+j)*(2*j-k)^(2*n+k)*2^(n+1-k)*(n+1)!/(j!*(k-j)!*(k+1))))/((3*n)!*2^n))+(n==0) \\ Tani Akinari, Feb 22 2025
    
  • PARI
    my(x='x+O('x^40), v=apply(numerator, Vec(x/sin(x)))); vector(#v\2, k, v[2*k-1]) \\ Michel Marcus, Feb 23 2025
  • Sage
    def A036280_list(len):
        R, C = [1], [1]+[0]*(len-1)
        for n in (1..len-1):
            for k in range(n, 0, -1):
                C[k] = -C[k-1] / (8*k*(2*k+1))
            C[0] = -sum(C[k] for k in (1..n))
            R.append(C[0].numerator())
        return R
    print(A036280_list(19)) # Peter Luschny, Feb 20 2016
    

Formula

Numerator of Sum_{k=1..2*n-2} Sum_{j=1..k} 2^(1-j)*(-1)^(n+j-1) * binomial(k,j) * Sum_{i=0..floor(j/2)} (j-2*i)^(2*n+j-2) * binomial(j,i) * (-1)^i/(2*n+j-2)!, n > 1. - Vladimir Kruchinin, Apr 12 2011
E.g.f.: x/sin(x) = 1 + (x^2/(6-x^2))*T(0), where T(k) = 1 - x^2*(2*k+2)*(2*k+3)/( x^2*(2*k+2)*(2*k+3) + ((2*k+2)*(2*k+3) - x^2)*((2*k+4)*(2*k+5) - x^2)/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 25 2013
a(n) = numerator((-1)^n*B(2*n,1/2)/(2*n)!) where B(n,x) denotes the Bernoulli polynomial. - Peter Luschny, Feb 20 2016
a(n) = numerator(Sum_{k=1..n+1}((Sum_{j=2*k-1..2*n+1}(binomial(j,2*k-1)*(j-1)!*2^(1-j)*(-1)^(n+1+j)*stirling2(2*n+1,j)))/(2*k-1))/(2*n)!). - Vladimir Kruchinin, Mar 21 2016
a(n) = numerator(eta(2*n)/Pi^(2*n)), where eta(n) is the Dirichlet eta function. See A230265 for denominator. - Mohammed Yaseen, Aug 02 2023
a(n) = numerator((Sum_{k=1..n} Sum_{j=0..floor(k/2)} binomial(3*n,n-k)*(-1)^(n+j)*(2*j-k)^(2*n+k)*2^(n+1-k)*(n+1)!/(j!*(k-j)!*(k+1)))/((3*n)!*2^n)) for n > 0. - Tani Akinari, Feb 22 2025

A036281 Denominators in Taylor series for x * cosec(x).

Original entry on oeis.org

1, 6, 360, 15120, 604800, 3421440, 653837184000, 37362124800, 762187345920000, 2554547108585472000, 401428831349145600000, 143888775912161280000, 846912068365871834726400000, 93067260259985915904000000, 2706661834818276108533760000000
Offset: 0

Views

Author

Keywords

Examples

			cosec(x) = x^(-1)+1/6*x+7/360*x^3+31/15120*x^5+...
1, 1/6, 7/360, 31/15120, 127/604800, 73/3421440, 1414477/653837184000, 8191/37362124800, ...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 75 (4.3.68).
  • G. W. Caunt, Infinitesimal Calculus, Oxford Univ. Press, 1914, p. 477.

Crossrefs

Cf. A036280, also A036282, A036283, B(2n) = A027641(2n) / A027642(2n).

Programs

  • Maple
    series(csc(x),x,60);
  • Mathematica
    a[n_] := 2(2^(2n-1)-1) Abs[BernoulliB[2n]]/(2n)! // Denominator;
    Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Jul 14 2018 *)
  • Sage
    def A036281_list(len):
        R, C = [1], [1]+[0]*(len-1)
        for n in (1..len-1):
            for k in range(n, 0, -1):
                C[k] = -C[k-1] / (k*(4*k+2))
            C[0] = -sum(C[k] for k in (1..n))
            R.append(C[0].denominator())
        return R
    print(A036281_list(15)) # Peter Luschny, Feb 21 2016

Formula

A036280(n)/a(n)= 2 *(2^(2n-1) -1) *abs(B(2n)) / (2n)!.
From Arkadiusz Wesolowski, Oct 16 2013: (Start)
a(n) = A036280(n)*Pi^(2*n)/(zeta(2*n)*(2 - (2^(1-n))^2)).
a(n) = A230265(n)/2. (End)
Showing 1-2 of 2 results.