cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A001896 Numerators of cosecant numbers -2*(2^(2*n - 1) - 1)*Bernoulli(2*n); also of Bernoulli(2*n, 1/2) and Bernoulli(2*n, 1/4).

Original entry on oeis.org

1, -1, 7, -31, 127, -2555, 1414477, -57337, 118518239, -5749691557, 91546277357, -1792042792463, 1982765468311237, -286994504449393, 3187598676787461083, -4625594554880206790555, 16555640865486520478399, -22142170099387402072897
Offset: 0

Views

Author

Keywords

Comments

|A001896(n)|*Pi^(2n)/A001897(n) is the value of the multi zeta function z(2,2,...,2) with n 2's, where z(k_l,k_2,...,k_n) = Sum_{i_n >= i_(n-1) >= ... >= i_1 >= 1}1/((i_1)^k_1 (i_2)^k_2 ... (i_n)^k_n). The proof is simple: start with the product expansion sin(Pi x)/(Pi x) = Product_{r>=1}(1-x^2/r^2), take reciprocals, and expand the right side. The coefficient of x^(2n) is seen to be z(2,2,...,2) with n 2's. - David Callan, Aug 27 2014
See A062715 for a method of obtaining the cosecant numbers from the square of Pascal's triangle. - Peter Bala, Jul 18 2013

Examples

			1, -1/12, 7/240, -31/1344, 127/3840, -2555/33792, 1414477/5591040, -57337/49152, 118518239/16711680, ... = a(n)/A033469(n).
Cosecant numbers {-2*(2^(2*n-1)-1)*Bernoulli(2*n)} are 1, -1/3, 7/15, -31/21, 127/15, -2555/33, 1414477/1365, -57337/3, 118518239/255, -5749691557/399, 91546277357/165, -1792042792463/69, 1982765468311237/1365, -286994504449393/3, 3187598676787461083/435, ... = a(n)/A001897(n).
		

References

  • H. T. Davis, Tables of the Mathematical Functions. Vols. 1 and 2, 2nd ed., 1963, Vol. 3 (with V. J. Fisher), 1962; Principia Press of Trinity Univ., San Antonio, TX, Vol. 2, p. 187.
  • S. A. Joffe, Sums of like powers of natural numbers, Quart. J. Pure Appl. Math. 46 (1914), 33-51.
  • N. E. Nörlund, Vorlesungen über Differenzenrechnung. Springer-Verlag, Berlin, 1924, p. 458.
  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 199. See Table 3.3.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A001897 (denominators), A033469, A036280, A062715, A145901.

Programs

  • Maple
    seq(numer(bernoulli(2*n, 1/2)), n=0..20);
  • Mathematica
    a[n_] := -2*(2^(2*n-1)-1)*BernoulliB[2*n]; Table[a[n], {n, 0, 20}] // Numerator (* Jean-François Alcover, Sep 11 2013 *)
  • PARI
    a(n) = numerator(-2*(2^(2*n-1)-1)*bernfrac(2*n)); \\ Michel Marcus, Mar 01 2015
    
  • Sage
    def A001896_list(len):
        R, C = [1], [1]+[0]*(len-1)
        for n in (1..len-1):
            for k in range(n, 0, -1):
                C[k] = C[k-1] / (8*k*(2*k+1))
            C[0] = -sum(C[k] for k in (1..n))
            R.append((C[0]*factorial(2*n)).numerator())
        return R
    A001896_list(18) # Peter Luschny, Feb 20 2016

Formula

a(n) = numerator((-Pi^2)^(-n)*Integral_{x=0..1} (log(x/(1-x)))^2*n). - Groux Roland, Nov 10 2009
a(n) = numerator((-1)^(n+1)*(2*Pi)^(-2*n)*(2*n)!*Li_{2*n}(-1)). - Peter Luschny, Jun 29 2012
E.g.f. 2*x*exp(x)/(exp(2*x) - 1) = 1 - 1/3*x^2/2! + 7/15*x^4/4! - 31/21*x^6/6! + .... = Sum_{n >= 0} a(n)/A001897(n)*x^(2*n)/(2*n)!. - Peter Bala, Jul 18 2013
a(n) = numerator((-1)^n*I(n)), where I(n) = 2*Pi*Integral_{z=-oo..oo} (z^n / (exp(-Pi*z) + exp(Pi*z)))^2. - Peter Luschny, Jul 25 2021

A036283 Write cosec x = 1/x + Sum e_n x^(2n-1)/(2n-1)!; sequence gives denominators of e_n.

Original entry on oeis.org

6, 60, 126, 120, 66, 16380, 6, 4080, 7182, 3300, 138, 32760, 6, 1740, 42966, 8160, 6, 34545420, 6, 270600, 37926, 1380, 282, 1113840, 66, 3180, 21546, 3480, 354, 1703601900, 6, 16320, 194166, 60, 4686, 5043631320, 6, 60, 9954, 9200400, 498, 142981020, 6
Offset: 1

Views

Author

Keywords

Comments

Denominator of [2^(2n-1) - 1] * Bernoulli(2n)/n.
Equals the denominators of the LS1[-2*m,n=1] matrix coefficients of A160487 for m = 1, 2, ... - Johannes W. Meijer, May 24 2009
The products of the first n terms of this sequence appear in the denominators of the a(n) formulas of the right hand columns of triangle A161739. See A000292 (n=1), A107963 (n=2), A161740 (n=3) and A161741 (n=4). The next six values of n show that this pattern persists. - Johannes W. Meijer, Oct 22 2009

Examples

			x^(-1)+1/6*x+7/360*x^3+31/15120*x^5+...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 75 (4.3.68).

Crossrefs

Programs

  • Maple
    seq(denom((2^(2*n-1)-1)*bernoulli(2*n)/n),n=1..100); # Robert Israel, Oct 14 2016
  • PARI
    a(n) = denominator((2^(2*n-1)-1)*bernfrac(2*n)/n) \\ Hugo Pfoertner, Dec 18 2022

Formula

Apparently a(n) = 6*A202318(n). - Hugo Pfoertner, Dec 18 2022

Extensions

Title corrected and offset changed by Johannes W. Meijer, May 21 2009
More terms, and edited by Robert Israel, Oct 14 2016

A036282 Write cosec x = 1/x + Sum_{n>=1} e_n * x^(2n-1)/(2n-1)!; sequence gives numerators of e_n.

Original entry on oeis.org

1, 7, 31, 127, 511, 1414477, 8191, 118518239, 5749691557, 91546277357, 162912981133, 1982765468311237, 22076500342261, 455371239541065869, 925118910976041358111, 16555640865486520478399, 1302480594081611886641, 904185845619475242495834469891
Offset: 1

Views

Author

Keywords

Comments

From Johannes W. Meijer, May 24 2009: (Start)
Absolute value of numerator of [2^(2n-1) - 1] * Bernoulli(2n)/n.
Equals the absolute values of the numerators of the LS1[ -2*m,n=1] matrix coefficients of A160487 for m = 1, 2, .. ,.
(End)

Examples

			cosec x
= x^(-1) + 1/6*x + 7/360*x^3 + 31/15120*x^5 + ...
= x^(-1) + 1/6 * x/1! + 7/60 * x^3/3! + 31/126 * x^5/5! + ...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 75 (4.3.68).

Crossrefs

Cf. A160487.
Differs from A282898.

Programs

  • Maple
    a:= n-> (m-> numer(coeff(series(csc(x), x, m+1), x, m)*m!))(2*n-1):
    seq(a(n), n=1..20);  # Alois P. Heinz, Jun 21 2018
  • Mathematica
    a[n_] := Abs[ Numerator[ (2^(2*n-1)-1) * BernoulliB[2*n]/n ] ]; Table[a[n], {n, 1, 18}] (* Jean-François Alcover, May 31 2013, after Johannes W. Meijer *)
  • PARI
    a(n) = abs(numerator((2^(2*n-1)-1)*bernfrac(2*n)/n)); \\ Michel Marcus, Mar 01 2015

Extensions

Title corrected and offset changed by Johannes W. Meijer, May 21 2009

A036281 Denominators in Taylor series for x * cosec(x).

Original entry on oeis.org

1, 6, 360, 15120, 604800, 3421440, 653837184000, 37362124800, 762187345920000, 2554547108585472000, 401428831349145600000, 143888775912161280000, 846912068365871834726400000, 93067260259985915904000000, 2706661834818276108533760000000
Offset: 0

Views

Author

Keywords

Examples

			cosec(x) = x^(-1)+1/6*x+7/360*x^3+31/15120*x^5+...
1, 1/6, 7/360, 31/15120, 127/604800, 73/3421440, 1414477/653837184000, 8191/37362124800, ...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 75 (4.3.68).
  • G. W. Caunt, Infinitesimal Calculus, Oxford Univ. Press, 1914, p. 477.

Crossrefs

Cf. A036280, also A036282, A036283, B(2n) = A027641(2n) / A027642(2n).

Programs

  • Maple
    series(csc(x),x,60);
  • Mathematica
    a[n_] := 2(2^(2n-1)-1) Abs[BernoulliB[2n]]/(2n)! // Denominator;
    Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Jul 14 2018 *)
  • Sage
    def A036281_list(len):
        R, C = [1], [1]+[0]*(len-1)
        for n in (1..len-1):
            for k in range(n, 0, -1):
                C[k] = -C[k-1] / (k*(4*k+2))
            C[0] = -sum(C[k] for k in (1..n))
            R.append(C[0].denominator())
        return R
    print(A036281_list(15)) # Peter Luschny, Feb 21 2016

Formula

A036280(n)/a(n)= 2 *(2^(2n-1) -1) *abs(B(2n)) / (2n)!.
From Arkadiusz Wesolowski, Oct 16 2013: (Start)
a(n) = A036280(n)*Pi^(2*n)/(zeta(2*n)*(2 - (2^(1-n))^2)).
a(n) = A230265(n)/2. (End)

A230265 Denominators of eta(2*n)/Pi^(2*n), where eta(n) is the Dirichlet eta function.

Original entry on oeis.org

2, 12, 720, 30240, 1209600, 6842880, 1307674368000, 74724249600, 1524374691840000, 5109094217170944000, 802857662698291200000, 287777551824322560000, 1693824136731743669452800000, 186134520519971831808000000
Offset: 0

Views

Author

Arkadiusz Wesolowski, Oct 14 2013

Keywords

Comments

The first 5 terms of this sequence are the same as in A060055.

Crossrefs

Numerators give A036280.

Programs

  • PARI
    for(n=0, 7, print1(2*denominator(polcoeff(Ser(1/sin(x)), 2*n-1)), ", "));

Formula

a(n) = A036280(n)*Pi^(2*n)/(zeta(2*n)*(1 - 2^(1-2*n))).
a(n) = denominator((-1)^(n+1)*BernoulliB(2*n)*(2^(2*n-1) - 1)/(2*n)!).
a(n) = 2*A036281(n).

A242032 A sequence related to lower bounds for the number of distinct differentiable structures on spheres of the form S^(4*k-1).

Original entry on oeis.org

2, 2, 7, 31, 127, 73, 1414477, 8191, 16931177, 5749691557, 91546277357, 3324754717, 1982765468311237, 22076500342261, 65053034220152267, 925118910976041358111, 16555640865486520478399, 8089941578146657681, 29167285342563717499865628061
Offset: 0

Views

Author

Peter Luschny, Aug 12 2014

Keywords

Comments

Definition: Divide the prime factorization of an integer M into two parts: L(k, M) = product{p^v(M) the highest power of a prime p which divides M and p < k} and H(k, M) = M / L(k, M). Then a(n) = H(2*floor((n+1)/2), A246053(n)).
For some n the a(n) are lower bounds for the number of distinct differentiable structures on spheres. Compare theorem 2 of the Milnor 1959 paper which asserts that a(2) and a(4) through a(8) are lower bounds for the spheres S^(4*k-1) for k = 2 and 4,..,8.
Let b(n) = numerator(B(2*n)/(2*n)!*(4^n-2)*(-1)^(n-1)), B(n) Bernoulli number. Apart from n=0 and n=1 the first n such that a(n) != b(n) is n = 1437. Thus in the range [2..1436] the a(n) are the numerators in the Taylor series for x*cosec(x), A036280.

Examples

			a( 0) = 2
a( 1) = 2
a( 2) = 7
a( 3) = 31
a( 4) = 127
a( 5) = 73
a( 6) = 23 * 89 * 691
a( 7) = 8191
a( 8) = 31 * 151 * 3617
a( 9) = 43867 * 131071
a(10) = 283 * 617 * 524287
a(11) = 127 * 131 * 337 * 593
a(12) = 47 * 103 * 178481 * 2294797
a(13) = 31 * 601 * 1801 * 657931
		

Crossrefs

Programs

  • Mathematica
    h[x_] := Zeta[2x] (4^x-2);
    a[n_] := Module[{M, k, p}, M = Denominator[h[Quotient[n+1, 2]] h[Quotient[ n, 2]]/h[n]]; k = 2 Quotient[n+1, 2]; p = 2; While[p < k, While[ Divisible[M, p], M = M/p]; p = NextPrime[p]]; M];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jul 12 2019, from Sage code *)
  • Sage
    def A242032(n):
        h = lambda x: zeta(2*x)*(4^x-2)
        M = Integer((h((n+1)//2)*h(n//2)/h(n)).denominator())
        k = 2*((n+1)//2)
        P = Primes()
        p = P.first()
        while p < k:
            while p.divides(M):
                M /= p
            p = P.next(p)
        return M
    [A242032(n) for n in (0..30)]
Showing 1-6 of 6 results.