cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A322315 Lexicographically earliest such sequence a that a(i) = a(j) => A185633(i) = A185633(j) for all i, j.

Original entry on oeis.org

1, 2, 1, 3, 1, 4, 1, 5, 1, 6, 1, 7, 1, 2, 1, 8, 1, 9, 1, 10, 1, 11, 1, 12, 1, 2, 1, 13, 1, 14, 1, 15, 1, 2, 1, 16, 1, 2, 1, 17, 1, 18, 1, 19, 1, 20, 1, 21, 1, 6, 1, 22, 1, 23, 1, 24, 1, 25, 1, 26, 1, 2, 1, 27, 1, 28, 1, 3, 1, 29, 1, 30, 1, 2, 1, 3, 1, 31, 1, 32, 1, 33, 1, 34, 1, 2, 1, 35, 1, 36, 1, 37, 1, 2, 1, 38, 1, 2, 1, 39, 1, 40, 1, 41, 1
Offset: 1

Views

Author

Antti Karttunen, Dec 03 2018

Keywords

Comments

Restricted growth sequence transform of A185633.
For all i, j: a(i) = a(j) => A322313(i) = A322313(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A185633(n) = { my(m=1); fordiv(n, d, if(isprime(1+d), m *= (1+d)^(1+valuation(n,1+d)))); (m); };
    v322315 = rgs_transform(vector(up_to, n, A185633(n)));
    A322315(n) = v322315[n];

A181819 Prime shadow of n: a(1) = 1; for n>1, if n = Product prime(i)^e(i), then a(n) = Product prime(e(i)).

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 3, 4, 2, 6, 2, 4, 4, 7, 2, 6, 2, 6, 4, 4, 2, 10, 3, 4, 5, 6, 2, 8, 2, 11, 4, 4, 4, 9, 2, 4, 4, 10, 2, 8, 2, 6, 6, 4, 2, 14, 3, 6, 4, 6, 2, 10, 4, 10, 4, 4, 2, 12, 2, 4, 6, 13, 4, 8, 2, 6, 4, 8, 2, 15, 2, 4, 6, 6, 4, 8, 2, 14, 7, 4, 2, 12, 4, 4, 4, 10, 2, 12, 4, 6, 4, 4, 4, 22, 2, 6, 6, 9, 2, 8, 2, 10, 8
Offset: 1

Views

Author

Matthew Vandermast, Dec 07 2010

Keywords

Comments

a(n) depends only on prime signature of n (cf. A025487). a(m) = a(n) iff m and n have the same prime signature, i.e., iff A046523(m) = A046523(n).
Because A046523 (the smallest representative of prime signature of n) and this sequence are functions of each other as A046523(n) = A181821(a(n)) and a(n) = a(A046523(n)), it implies that for all i, j: a(i) = a(j) <=> A046523(i) = A046523(j) <=> A101296(i) = A101296(j), i.e., that equivalence-class-wise this is equal to A101296, and furthermore, applying any function f on this sequence gives us a sequence b(n) = f(a(n)) whose equivalence class partitioning is equal to or coarser than that of A101296, i.e., b is then a sequence that depends only on the prime signature of n (the multiset of exponents of its prime factors), although not necessarily in a very intuitive way. - Antti Karttunen, Apr 28 2022

Examples

			20 = 2^2*5 has the exponents (2,1) in its prime factorization. Accordingly, a(20) = prime(2)*prime(1) = A000040(2)*A000040(1) = 3*2 = 6.
		

Crossrefs

Programs

Formula

From Antti Karttunen, Feb 07 2016: (Start)
a(1) = 1; for n > 1, a(n) = A000040(A067029(n)) * a(A028234(n)).
a(1) = 1; for n > 1, a(n) = A008578(A001511(n)) * a(A064989(n)).
Other identities. For all n >= 1:
a(A124859(n)) = A122111(a(n)) = A238745(n). - from Matthew Vandermast's formulas for the latter sequence.
(End)
a(n) = A246029(A156552(n)). - Antti Karttunen, Oct 15 2016
From Antti Karttunen, Apr 28 & Apr 30 2022: (Start)
A181821(a(n)) = A046523(n) and a(A046523(n)) = a(n). [See comments]
a(n) = A329900(A124859(n)) = A319626(A124859(n)).
a(n) = A246029(A156552(n)).
a(a(n)) = A328830(n).
a(A304660(n)) = n.
a(A108951(n)) = A122111(n).
a(A185633(n)) = A322312(n).
a(A025487(n)) = A181820(n).
a(A276076(n)) = A275735(n) and a(A276086(n)) = A328835(n).
As the sequence converts prime exponents to prime indices, it effects the following mappings:
A001221(a(n)) = A071625(n). [Number of distinct indices --> Number of distinct exponents]
A001222(a(n)) = A001221(n). [Number of indices (i.e., the number of prime factors with multiplicity) --> Number of exponents (i.e., the number of distinct prime factors)]
A056239(a(n)) = A001222(n). [Sum of indices --> Sum of exponents]
A066328(a(n)) = A136565(n). [Sum of distinct indices --> Sum of distinct exponents]
A003963(a(n)) = A005361(n). [Product of indices --> Product of exponents]
A290103(a(n)) = A072411(n). [LCM of indices --> LCM of exponents]
A156061(a(n)) = A290107(n). [Product of distinct indices --> Product of distinct exponents]
A257993(a(n)) = A134193(n). [Index of the least prime not dividing n --> The least number not among the exponents]
A055396(a(n)) = A051904(n). [Index of the least prime dividing n --> Minimal exponent]
A061395(a(n)) = A051903(n). [Index of the greatest prime dividing n --> Maximal exponent]
A008966(a(n)) = A351564(n). [All indices are distinct (i.e., n is squarefree) --> All exponents are distinct]
A007814(a(n)) = A056169(n). [Number of occurrences of index 1 (i.e., the 2-adic valuation of n) --> Number of occurrences of exponent 1]
A056169(a(n)) = A136567(n). [Number of unitary prime divisors --> Number of exponents occurring only once]
A064989(a(n)) = a(A003557(n)) = A295879(n). [Indices decremented after <--> Exponents decremented before]
Other mappings:
A007947(a(n)) = a(A328400(n)) = A329601(n).
A181821(A007947(a(n))) = A328400(n).
A064553(a(n)) = A000005(n) and A000005(a(n)) = A182860(n).
A051903(a(n)) = A351946(n).
A003557(a(n)) = A351944(n).
A258851(a(n)) = A353379(n).
A008480(a(n)) = A309004(n).
a(A325501(n)) = A325507(n) and a(A325502(n)) = A038754(n+1).
a(n!) = A325508(n).
(End)

Extensions

Name "Prime shadow" (coined by Gus Wiseman in A325755) prefixed to the definition by Antti Karttunen, Apr 27 2022

A067513 Number of divisors d of n such that d+1 is prime.

Original entry on oeis.org

1, 2, 1, 3, 1, 3, 1, 3, 1, 3, 1, 5, 1, 2, 1, 4, 1, 4, 1, 4, 1, 3, 1, 5, 1, 2, 1, 4, 1, 5, 1, 4, 1, 2, 1, 7, 1, 2, 1, 5, 1, 4, 1, 4, 1, 3, 1, 6, 1, 3, 1, 4, 1, 4, 1, 4, 1, 3, 1, 8, 1, 2, 1, 4, 1, 5, 1, 3, 1, 4, 1, 8, 1, 2, 1, 3, 1, 4, 1, 6, 1, 3, 1, 7, 1, 2, 1, 5, 1, 6, 1, 4, 1, 2, 1, 7, 1, 2, 1, 5, 1, 4, 1
Offset: 1

Views

Author

Amarnath Murthy, Feb 12 2002

Keywords

Comments

1, 2 and 4 are the only numbers such that for every divisor d, d+1 is a prime.
These and only these primes appear as prime divisors of any term of InvPhi(n) set if n is not empty, i.e., if n is from A002202. - Labos Elemer, Jun 24 2002
a(n) is the number of integers k such that n = k - k/p where p is one of the prime divisors of k. (See, e.g., A064097 and A333123, which are related to the mapping k -> k - k/p.) - Robert G. Wilson v, Jun 12 2022

Examples

			a(12) = 5 as the divisors of 12 are 1, 2, 3, 4, 6 and 12 and the corresponding primes are 2,3,5,7 and 13. Only 3+1 = 4 is not a prime.
		

Crossrefs

Even-indexed terms give A046886.
Cf. A005408 (positions of 1's), A051222 (of 2's).

Programs

  • Haskell
    a067513 = sum . map (a010051 . (+ 1)) . a027750_row
    -- Reinhard Zumkeller, Jul 31 2012
    
  • Maple
    A067513 := proc(n)
        local a,d;
        a := 0 ;
        for d in numtheory[divisors](n) do
            if isprime(d+1) then
                a := a+1 ;
            end if;
        end do:
        a ;
    end proc:
    seq(A067513(n),n=1..100) ; # R. J. Mathar, Aug 07 2022
  • Mathematica
    a[n_] := Length[Select[Divisors[n]+1, PrimeQ]]
    Table[Count[Divisors[n],?(PrimeQ[#+1]&)],{n,110}] (* _Harvey P. Dale, Feb 29 2012 *)
    a[n_] := DivisorSum[n, 1 &, PrimeQ[# + 1] &]; Array[a, 100] (* Amiram Eldar, Jan 11 2025 *)
  • PARI
    a(n)=sumdiv(n,d,isprime(d+1)) \\ Charles R Greathouse IV, Dec 23 2011
    
  • Python
    from sympy import divisors, isprime
    def a(n): return sum(1 for d in divisors(n, generator=True) if isprime(d+1))
    print([a(n) for n in range(1, 104)]) # Michael S. Branicky, Jul 12 2022

Formula

a(n) = 2 iff Bernoulli number B_{n} has denominator 6 (cf. A051222). - Vladeta Jovovic, Feb 13 2002
a(n) <= A141197(n). - Reinhard Zumkeller, Oct 06 2008
a(n) = A001221(A027760(n)). - Enrique Pérez Herrero, Dec 23 2011
a(n) = Sum_{k = 1..A000005(n)} A010051(A027750(n,k)+1). - Reinhard Zumkeller, Jul 31 2012
a(n) = A001221(A185633(n)) = A001222(A322312(n)). - Antti Karttunen, Jul 12 2022
Sum_{k=1..n} a(k) = n * (log(log(n)) + B) + O(n/log(n)), where B is a constant (Prachar, 1955). - Amiram Eldar, Jan 11 2025

Extensions

Edited by Dean Hickerson, Feb 12 2002

A079612 Largest number m such that a^n == 1 (mod m) whenever a is coprime to m.

Original entry on oeis.org

2, 24, 2, 240, 2, 504, 2, 480, 2, 264, 2, 65520, 2, 24, 2, 16320, 2, 28728, 2, 13200, 2, 552, 2, 131040, 2, 24, 2, 6960, 2, 171864, 2, 32640, 2, 24, 2, 138181680, 2, 24, 2, 1082400, 2, 151704, 2, 5520, 2, 1128, 2, 4455360, 2, 264, 2, 12720, 2, 86184, 2, 13920
Offset: 1

Views

Author

N. J. A. Sloane, Jan 29 2003

Keywords

Comments

a(m) divides the Jordan function J_m(n) for all n except when n is a prime dividing a(m) or m=2, n=4; it is the largest number dividing all but finitely many values of J_m(n). For m > 0, a(m) also divides Sum_{k=1}^n J_m(k) for n >= the largest exceptional value. - Franklin T. Adams-Watters, Dec 10 2005
The numbers m with this property are the divisors of a(n) that are not divisors of a(r) for r

References

  • R. C. Vaughan and T. D. Wooley, Waring's problem: a survey, pp. 285-324 of Surveys in Number Theory (Urbana, May 21, 2000), ed. M. A. Bennett et al., Peters, 2003. (The function K(n), see p. 303.)

Crossrefs

Cf. A006863 (bisection except for initial term); A059379 (Jordan function).

Programs

  • PARI
    a(n) = {if (n%2, 2, res = 1; forprime(p=2, n+1, if (!(n % (p-1)), t = valuation(n, p); if (p==2, if (t, res *= p^(t+2)), res *= p^(t+1)););); res;);} \\ Michel Marcus, May 12 2018

Formula

a(n) = 2 for n odd; for n even, a(n) = product of 2^(t+2) (where 2^t exactly divides n) and p^(t+1) (where p runs through all odd primes such that p-1 divides n and p^t exactly divides n).
From Antti Karttunen, Dec 19 2018: (Start)
a(n) = A185633(n)*(2-A000035(n)).
It also seems that for n > 1, a(n) = 2*A075180(n-1). (End)
We have 2*A075180(2n-1) = A006863(n) by definition, and A006863(n) = a(2n) by the comments in A006863. Hence a(n) = 2*A075180(n-1) for all even n. For all odd n > 1, we have a(n) = 2, which is also equal to 2*A075180(n-1). So the formula above is true. - Jianing Song, Apr 05 2021

Extensions

Edited by Franklin T. Adams-Watters, Dec 10 2005
Definition corrected by T. D. Noe, Aug 13 2008
Rather arbitrary term a(0) removed by Max Alekseyev, May 27 2010

A322312 a(n) = Product_{d|n, d+1 is prime} prime(1+A286561(n,d+1)), where A286561(n,k) gives the k-valuation of n (for k > 1).

Original entry on oeis.org

2, 6, 2, 20, 2, 18, 2, 28, 2, 12, 2, 120, 2, 6, 2, 88, 2, 60, 2, 60, 2, 12, 2, 168, 2, 6, 2, 40, 2, 72, 2, 104, 2, 6, 2, 800, 2, 6, 2, 168, 2, 54, 2, 40, 2, 12, 2, 528, 2, 12, 2, 40, 2, 84, 2, 56, 2, 12, 2, 1440, 2, 6, 2, 136, 2, 72, 2, 20, 2, 24, 2, 2240, 2, 6, 2, 20, 2, 36, 2, 528, 2, 12, 2, 720, 2, 6, 2, 112, 2
Offset: 1

Author

Antti Karttunen, Dec 03 2018

Keywords

Crossrefs

Cf. A067513, A185633, A286561, A322313 (rgs-transform), A322314.
Cf. also A293514, A322310.

Programs

  • PARI
    A322312(n) = { my(m=1,p); fordiv(n,d,p=1+d; if(isprime(p), for(i=0,oo,if(n%(p^i),m *= prime(i);break)))); (m); };

Formula

a(n) = Product_{d|n} A000040(1+A286561(n,1+d))^A010051(1+d).
a(n) = A181819(A185633(n)).
For all n, A001222(a(n)) = A067513(n).

A323155 a(n) = Product_{d|n, d-1 is prime} (d-1)^(1+A286561(n,d-1)), where A286561(n,k) gives the k-valuation of n (for k > 1).

Original entry on oeis.org

1, 1, 2, 3, 1, 20, 1, 21, 2, 1, 1, 3960, 1, 13, 2, 21, 1, 340, 1, 57, 2, 1, 1, 1275120, 1, 1, 2, 39, 1, 2900, 1, 651, 2, 1, 1, 201960, 1, 37, 2, 399, 1, 10660, 1, 129, 2, 1, 1, 119861280, 1, 1, 2, 3, 1, 18020, 1, 1911, 2, 1, 1, 643678200, 1, 61, 2, 651, 1, 20, 1, 201, 2, 13, 1, 4617209520, 1, 73, 2, 111, 1, 20, 1, 31521, 2, 1, 1, 175186440, 1, 1, 2, 903, 1
Offset: 1

Author

Antti Karttunen, Jan 09 2019

Keywords

Crossrefs

Programs

  • PARI
    A323155(n) = { my(m=1); fordiv(n, d, if(isprime(d-1), m *= (d-1)^(1+valuation(n,d-1)))); (m); }; \\ Antti Karttunen, Jan 09 2019

Formula

a(n) = Product_{d|n, d>2} [(d-1)^(1+A286561(n,d-1))]^A010051(d-1).

A193267 The number 1 alternating with the numbers A006953/A002445 (which are integers).

Original entry on oeis.org

1, 2, 1, 4, 1, 6, 1, 8, 1, 2, 1, 12, 1, 2, 1, 16, 1, 18, 1, 20, 1, 2, 1, 24, 1, 2, 1, 4, 1, 6, 1, 32, 1, 2, 1, 36, 1, 2, 1, 40, 1, 42, 1, 4, 1, 2, 1, 48, 1, 2, 1, 4, 1, 54, 1, 8, 1, 2, 1, 60, 1, 2, 1, 64, 1, 6, 1, 4, 1, 2, 1, 72, 1, 2, 1, 4, 1, 6, 1, 80, 1, 2, 1, 84, 1, 2, 1, 8, 1, 18, 1, 4, 1, 2, 1, 96, 1, 2, 1, 100
Offset: 1

Author

Paul Curtz, Dec 20 2012

Keywords

Comments

a(n) is the product over all prime powers p^e, where p^e is the highest power of p dividing n and p-1 divides n. - Peter Luschny, Mar 12 2018

Programs

  • Julia
    using Nemo
    function A193267(n) P = 1
        for (p, e) in factor(ZZ(n))
            divisible(ZZ(n), p - 1) && (P *= p^e) end
    P end
    [A193267(n) for n in 1:100] |> println # Peter Luschny, Mar 12 2018
  • Magma
    [Denominator(Bernoulli(n)/n)/Denominator(Bernoulli(n)): n in [1..100]]; // Vincenzo Librandi, Mar 12 2018
    
  • Maple
    with(numtheory); a := proc(n) divisors(n); map(i->i+1, %); select(isprime, %);
    mul(k^padic[ordp](n,k),k=%) end: seq(a(n), n=1..100); # Peter Luschny, Mar 12 2018
    # Alternatively:
    A193267 := proc(n) local P, F, f, divides; divides := (a,b) -> is(irem(b,a) = 0):
    P := 1; F := ifactors(n)[2]; for f in F do if divides(f[1]-1, n) then
    P := P*f[1]^f[2] fi od; P end: seq(A193267(n), n=1..100); # Peter Luschny, Mar 12 2018
  • Mathematica
    a[n_] := If[OddQ[n], 1, Denominator[ BernoulliB[n]/n ] / Denominator[ BernoulliB[n]] ]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Dec 21 2012 *)

Formula

a(n+1) = A185633(n+1)/A027760(n+1).
a(n+1) = c(n+2)/c(n+1).
Showing 1-7 of 7 results.