cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A001620 Decimal expansion of Euler's constant (or the Euler-Mascheroni constant), gamma.

Original entry on oeis.org

5, 7, 7, 2, 1, 5, 6, 6, 4, 9, 0, 1, 5, 3, 2, 8, 6, 0, 6, 0, 6, 5, 1, 2, 0, 9, 0, 0, 8, 2, 4, 0, 2, 4, 3, 1, 0, 4, 2, 1, 5, 9, 3, 3, 5, 9, 3, 9, 9, 2, 3, 5, 9, 8, 8, 0, 5, 7, 6, 7, 2, 3, 4, 8, 8, 4, 8, 6, 7, 7, 2, 6, 7, 7, 7, 6, 6, 4, 6, 7, 0, 9, 3, 6, 9, 4, 7, 0, 6, 3, 2, 9, 1, 7, 4, 6, 7, 4, 9
Offset: 0

Views

Author

Keywords

Comments

Yee (2010) computed 29844489545 decimal digits of gamma.
Decimal expansion of 0th Stieltjes constant. - Paul Muljadi, Aug 24 2010
The value of Euler's constant is close to (18/Pi^2)*Sum_{n>=0} 1/4^(2^n) = 0.5770836328... = (6/5) * A082020 * A078585. - Arkadiusz Wesolowski, Mar 27 2012

Examples

			0.577215664901532860606512090082402431042...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 3.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 24, 259-262.
  • S. R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, pp. 28-40, 166, 365.
  • C. F. Gauss, Disquisitiones Arithmeticae, Yale, 1965; see p. 359.
  • B. Gugger, Problèmes corrigés de Mathématiques posés aux concours des Ecoles Militaires, Ecole de l'Air, 1992, option MP, 1ère épreuve, Ellipses, 1993, pp. 167-184.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §8.3 Infinite Series, pp. 273-274.
  • J. Havil, Gamma: Exploring Euler's Constant, Princeton Univ. Press, 2003.
  • J.-M. Monier, Analyse, Exercices corrigés, 2ème année, MP, Dunod, Exercice 4.3.14, pages 371 and 387, 1997.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 166.
  • Joel L. Schiff, The Laplace Transform: Theory and Applications, Springer-Verlag New York, Inc. (1999). See p. 44.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 1, equation 1:7:5 at page 13.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987, p. 28.
  • E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Cambridge Univ. Press, 4th ed., 1990.

Crossrefs

Cf. A002852 (continued fraction).
Cf. A073004 (exp(gamma)) and A094640 ("alternating Euler constant").
Cf. A231095 (power tower using this constant).
Denote the generalized Euler constants, also called Stieltjes constants, by Sti(n).
Sti(0) = A001620 (Euler's constant gamma) (cf. A262235/A075266),
Sti(1/2) = A301816, Sti(1) = A082633 (cf. A262382/A262383), Sti(3/2) = A301817,
Sti(2) = A086279 (cf. A262384/A262385), Sti(3) = A086280 (cf. A262386/A262387),
Sti(4) = A086281, Sti(5) = A086282, Sti(6) = A183141, Sti(7) = A183167,
Sti(8) = A183206, Sti(9) = A184853, Sti(10) = A184854.

Programs

  • Magma
    EulerGamma(250); // G. C. Greubel, Aug 21 2018
    
  • Maple
    Digits := 100; evalf(gamma);
  • Mathematica
    RealDigits[ EulerGamma, 10, 105][[1]] (* Robert G. Wilson v, Nov 01 2004 *)
    (1/2) N[Sum[PolyGamma[0, 1/2 + 2^k] - PolyGamma[0, 2^k], {k, 0, Infinity }], 30] (* Dimitri Papadopoulos, Nov 30 2016 *)
  • PARI
    default(realprecision, 20080); x=Euler; d=0; for (n=0, 20000, x=(x-d)*10; d=floor(x); write("b001620.txt", n, " ", d));  \\ Harry J. Smith, Apr 15 2009
    
  • Python
    from sympy import S
    def aupton(digs): return [int(d) for d in str(S.EulerGamma.n(digs+2))[2:-2]]
    print(aupton(99)) # Michael S. Branicky, Nov 22 2021

Formula

Limit_{n->oo} (1 + 1/2 + ... + 1/n - log(n)) (definition).
Sum_{n>=1} (1/n - log(1 + 1/n)), since log(1 + 1/1) + ... + log(1 + 1/n) telescopes to log(n+1) and lim_{n->infinity} (log(n+1) - log(n)) = 0.
Integral_{x=0..1} -log(log(1/x)). - Robert G. Wilson v, Jan 04 2006
Integral_{x=0..1,y=0..1} (x-1)/((1-x*y)*log(x*y)). - (see Sondow 2005)
Integral_{x=0..oo} -log(x)*exp(-x). - Jean-François Alcover, Mar 22 2013
Integral_{x=0..1} (1 - exp(-x) - exp(-1/x))/x. - Jean-François Alcover, Apr 11 2013
Equals the lim_{n->oo} fractional part of zeta(1+1/n). The corresponding fractional part for x->1 from below, using n-1/n, is -(1-a(n)). The fractional part found in this way for the first derivative of Zeta as x->1 is A252898. - Richard R. Forberg, Dec 24 2014
Limit_{x->1} (Zeta(x)-1/(x-1)) from Whittaker and Watson. 1990. - Richard R. Forberg, Dec 30 2014
exp(gamma) = lim_{i->oo} exp(H(i)) - exp(H(i-1)), where H(i) = i-th Harmonic number. For a given n this converges faster than the standard definition, and two above, after taking the logarithm (e.g., 13 digits vs. 6 digits at n=3000000 or x=1+1/3000000). - Richard R. Forberg, Jan 08 2015
Limit_{n->oo} (1/2) Sum_{j>=1} Sum_{k=1..n} ((1 - 2*k + 2*n)/((-1 + k + j*n) (k + j*n))). - Dimitri Papadopoulos, Jan 13 2016
Equals 25/27 minus lim_{x->oo} 2^(x+1)/3 - (22/27)*(4/3)^x - Zeta(Sum_{i>=1} (H_i/i^x)), letting H_i denote the i-th harmonic number. - John M. Campbell, Jan 29 2016
Limit_{x->0} -B'(x), where B(x) = -x zeta(1-x) is the "Bernoulli function". - Jean-François Alcover, May 20 2016
Sum_{k>=0} (1/2)(digamma(1/2+2^k) - digamma(2^k)) where digamma(x) = d/dx log(Gamma(x)). - Dimitri Papadopoulos, Nov 14 2016
Using the abbreviations a = log(z^2 + 1/4)/2, b = arctan(2*z) and c = cosh(Pi*z) then gamma = -Pi*Integral_{0..oo} a/c^2. The general case is for n >= 0 (which includes Euler's gamma as gamma_0) gamma_n = -(Pi/(n+1))* Integral_{0..oo} sigma(n+1)/c^2, where sigma(n) = Sum_{k=0..floor(n/2)} (-1)^k*binomial(n,2*k)*b^(2*k) *a^(n-2*k). - Peter Luschny, Apr 19 2018
Limit_{s->0} (Zeta'(1-s)*s - Zeta(1-s)) / (Zeta(1-s)*s). - Peter Luschny, Jun 18 2018
log(2) * (gamma - (1/2) * log(2)) = -Sum_{v >= 1} (1/2^(v+1)) * (Delta^v (log(w)/w))|{w=1}, where Delta(f(w)) = f(w) - f(w + 1) (forward difference). [This is a formula from Lerch (1897).] - _Petros Hadjicostas, Jul 21 2019
From Amiram Eldar, Jul 05 2020: (Start)
Equals Integral_{x=1..oo} (1/floor(x) - 1/x) dx.
Equals Integral_{x=0..1} (1/(1-x) + 1/log(x)) dx = Integral_{x=0..1} (1/x + 1/log(1-x)) dx.
Equals -Integral_{-oo..oo} x*exp(x-exp(x)) dx.
Equals Sum_{k>=1} (-1)^k * floor(log_2(k))/k.
Equals (-1/2) * Sum_{k>=1} (Lambda(k)-1)/k, where Lambda is the Mangoldt function. (End)
Equals Integral_{0..1} -1/LambertW(-1,-x*exp(-x)) dx = 1 + Integral_{0..1} LambertW(-1/x*exp(-1/x)) dx. - Gleb Koloskov, Jun 12 2021
Equals Sum_{k>=2} (-1)^k * zeta(k)/k. - Vaclav Kotesovec, Jun 19 2021
Equals lim_{x->oo} log(x) - Sum_{p prime <= x} log(p)/(p-1). - Amiram Eldar, Jun 29 2021
Limit_{n->oo} (2*HarmonicNumber(n) - HarmonicNumber(n^2)). After answer by Eric Naslund on Mathematics Stack Exchange, on Jun 21 2011. - Mats Granvik, Jul 19 2021
Equals Integral_{x=0..oo} ( exp(-x) * (1/(1-exp(-x)) - 1/x) ) dx (see Gugger or Monier). - Bernard Schott, Nov 21 2021
Equals 1/2 + Limit_{s->1} (Zeta(s) + Zeta(1/s))/2. - Thomas Ordowski, Jan 12 2023
Equals Sum_{j>=2} Sum_{k>=2} ((k-1)/(k*j^k)). - Mike Tryczak, Apr 06 2023
From Stefano Spezia, Oct 27 2024: (Start)
Equals Sum_{n>=1} n*(zeta(n+1) - 1)/(n + 1) [Euler] (see Finch at p. 30).
Equals lim_{n->oo} Sum_{prime p<=n} log(p/(p - 1)) - log(log(n)) (see Finch at p. 31). (End)
Equals lim_{s->1} zeta(s) - zeta(s)^2/zeta(2*s - 1)/2. - Mats Granvik, Jul 07 2025

A002657 Numerators of Cauchy numbers of second type (= Bernoulli numbers B_n^{(n)}).

Original entry on oeis.org

1, 1, 5, 9, 251, 475, 19087, 36799, 1070017, 2082753, 134211265, 262747265, 703604254357, 1382741929621, 8164168737599, 5362709743125, 8092989203533249, 15980174332775873, 12600467236042756559
Offset: 0

Views

Author

Keywords

Comments

These coefficients (with alternating signs) are also known as the Nørlund [or Norlund, Noerlund or Nörlund] numbers. [After the Danish mathematician Niels Erik Nørlund (1885-1981). - Amiram Eldar, Jun 17 2021]
The denominators are found in A002790. The alternating rational sequence ((-1)^n)*a(n)/A002790(n)is the z-sequence for the Stirling2 triangle A008277(n+1,k+1), n>=k>=0. This is the Sheffer (exp(x),exp(x)-1) triangle. See the W. Lang link under A006232 for Sheffer a- and z-sequences with references, and the conversion to S. Roman's notation. The a-sequence is A006232(n)/A006233(n). - Wolfdieter Lang, Oct 06 2011 [This is the Sheffer triangle A007318*A048993. Added Jun 20 2017]
A simple series with the signless Cauchy numbers of second type C2(n) leads to Euler's constant: gamma = 1 - Sum_{n >=1} C2(n)/(n*(n+1)!) = 1 - 1/4 - 5/72 - 1/32 - 251/14400 - 19/1728 - 19087/2540160 - ..., see references [Blagouchine] below, as well as A075266 and A262235. - Iaroslav V. Blagouchine, Sep 15 2015

Examples

			1, 1/2, 5/6, 9/4, 251/30, 475/12, 19087/84, 36799/24, 1070017/90, ...
		

References

  • Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 294.
  • P. Curtz, Intégration numérique des systèmes différentiels à conditions initiales, Centre de Calcul Scientifique de l'Armement, Arcueil, 1969.
  • Louis Melville Milne-Thompson, Calculus of Finite Differences, 1951, p. 136.
  • N. E. Nørlund, Vorlesungen über Differenzenrechnung, Springer-Verlag, Berlin, 1924.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(-x/((1-x)*Log(1-x)) )); [Numerator(Factorial(n-1)*b[n]): n in [1..m-1]]; // G. C. Greubel, Oct 29 2018
  • Maple
    seq(numer(add((-1)^(n-k)*Stirling1(n,k)/(k+1),k=0..n)),n=0..10); # Peter Luschny, Apr 28 2009
  • Mathematica
    Table[Abs[Numerator[NorlundB[n,n]]],{n,0,30}](* Vladimir Joseph Stephan Orlovsky, Dec 30 2010 *)
    a[ n_] := If[ n < 0, 0, (-1)^n Numerator @ NorlundB[ n, n]]; (* Michael Somos, Jul 12 2014 *)
    a[ n_] := If[ n < 0, 0, Numerator@Integrate[ Pochhammer[ x, n], {x, 0, 1}]]; (* Michael Somos, Jul 12 2014 *)
    a[ n_] := If[ n < 0, 0, Numerator[ n! SeriesCoefficient[ -x / ((1 - x) Log[ 1 - x]), {x, 0, n}]]]; (* Michael Somos, Jul 12 2014 *)
    a[ n_] := If[ n < 0, 0, (-1)^n Numerator[ n! SeriesCoefficient[ (x / (Exp[x] - 1))^n, {x, 0, n}]]]; (* Michael Somos, Jul 12 2014 *)
  • Maxima
    v(n):=if n=0 then 1 else 1-sum(v(i)/(n-i+1),i,0,n-1);
    makelist(num(n!*v(n)),n,0,10); /* Vladimir Kruchinin, Aug 28 2013 */
    

Formula

Numerator of integral of x(x+1)...(x+n-1) from 0 to 1.
E.g.f.: -x/((1-x)*log(1-x)). (Note: the numerator of the coefficient of x^n/n! is a(n). - Michael Somos, Jul 12 2014). E.g.f. rewritten by Iaroslav V. Blagouchine, May 07 2016
Numerator of Sum_{k=0..n} (-1)^(n-k) A008275(n,k)/(k+1). - Peter Luschny, Apr 28 2009
a(n) = numerator(n!*v(n)), where v(n) = 1 - Sum_{i=0..n-1} v(i)/(n-i+1), v(0)=1. - Vladimir Kruchinin, Aug 28 2013

A002790 Denominators of Cauchy numbers of second type (= Bernoulli numbers B_n^{(n)}).

Original entry on oeis.org

1, 2, 6, 4, 30, 12, 84, 24, 90, 20, 132, 24, 5460, 840, 360, 16, 1530, 180, 7980, 840, 13860, 440, 1656, 720, 81900, 6552, 216, 112, 3480, 240, 114576, 7392, 117810, 2380, 1260, 72, 3838380, 207480, 32760, 560, 568260, 27720, 238392, 55440, 869400, 2576, 236880
Offset: 0

Views

Author

Keywords

Comments

The numerators are given in A002657.
These coefficients (with alternating signs) are also known as the Nørlund [or Norlund, Noerlund or Nörlund] numbers.
A simple series with the signless Cauchy numbers of second type C2(n) leads to Euler's constant: gamma = 1 - Sum_{n >=1} C2(n)/(n*(n+1)!) = 1 - 1/4 - 5/72 - 1/32 - 251/14400 - 19/1728 - 19087/2540160 - ..., see references [Blagouchine] below, as well as A075266 and A262235. - Iaroslav V. Blagouchine, Sep 15 2015
a(n) appears to be divisible by n+1. - Hal M. Switkay, Aug 15 2025

Examples

			1, 1/2, 5/6, 9/4, 251/30, 475/12, 19087/84, 36799/24, 1070017/90, ...
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 294.
  • L. M. Milne-Thompson, Calculus of Finite Differences, 1951, p. 136.
  • N. E. Nørlund, Vorlesungen über Differenzenrechnung, Springer-Verlag, Berlin, 1924.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    m:=60; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(-x/((1-x)*Log(1-x)) )); [Denominator(Factorial(n-1)*b[n]): n in [1..m-1]]; // G. C. Greubel, Oct 28 2018
  • Maple
    A002790 := proc(n)
        denom(add((-1)^k*Stirling1(n, k)/(k+1), k=0..n)) ;
    end proc: # Peter Luschny, Apr 28 2009
    v := proc(n) option remember; ifelse(n=0, 1, 1 - add(v(i)/(n-i+1), i=0..n-1)) end:
    seq(denom(n!*v(n)), n = 0..46); # after Vladimir Kruchinin, Peter Luschny, Aug 17 2025
  • Mathematica
    Table[ Denominator[ NorlundB[n, n]], {n, 0, 60}] (* Vladimir Joseph Stephan Orlovsky, Dec 30 2010 *)
  • Maxima
    v(n):=if n=0 then 1 else 1-sum(v(i)/(n-i+1),i,0,n-1);
    makelist(denom(n!*v(n)),n,0,10); /* Vladimir Kruchinin, Aug 28 2013 */
    

Formula

Denominator of integral of x(x+1)...(x+n-1) from 0 to 1.
E.g.f.: -x/((1-x)*log(1-x)). - Corrected by Iaroslav V. Blagouchine, May 07 2016.
Denominator of Sum_{k=0..n} (-1)^k A008275(n,k)/(k+1). - Peter Luschny, Apr 28 2009
a(n) = denominator(n!*v(n)), where v(n) = 1 - Sum_{i=0..n-1} v(i)/(n-i+1), v(0)=1. - Vladimir Kruchinin, Aug 28 2013

A075266 Numerator of the coefficient of x^n in log(-log(1-x)/x).

Original entry on oeis.org

0, 1, 5, 1, 251, 19, 19087, 751, 1070017, 2857, 26842253, 434293, 703604254357, 8181904909, 1166309819657, 5044289, 8092989203533249, 5026792806787, 12600467236042756559, 69028763155644023, 8136836498467582599787
Offset: 0

Views

Author

Paul D. Hanna, Sep 15 2002

Keywords

Comments

A series with these numerators leads to Euler's constant: gamma = 1 - 1/4 - 5/72 - 1/32 - 251/14400 - 19/1728 - 19087/2540160 - ..., see references [Blagouchine] below, as well as A262235. - Iaroslav V. Blagouchine, Sep 15 2015

Crossrefs

Cf. A053657, A075264, A075267 (denominator), A262235.

Programs

  • Maple
    S:= series(log(-log(1-x)/x),x,51):
    seq(numer(coeff(S,x,j)),j=0..50); # Robert Israel, May 17 2016
    # Alternative:
    a := proc(n) local r; r := proc(n) option remember; if n=0 then 1 else
    1 - add(r(k)/(n-k+1), k=0..n-1) fi end: numer(r(n)/(n*(n+1))) end:
    seq(a(n), n=0..20); # Peter Luschny, Apr 19 2018
  • Mathematica
    Numerator[ CoefficientList[ Series[ Log[ -Log[1 - x]/x], {x, 0, 20}], x]]
  • SageMath
    @cached_function
    def r(n): return 1 - sum(r(k)/(n-k+1) for k in range(n)) if n > 0 else 1
    def a(n: int): return numerator(r(n)/(n*(n+1))) if n > 0 else 0
    print([a(n) for n in range(21)])  # Peter Luschny, Aug 15 2025

Formula

a(n) = numerator(Sum_{k=1..n} (k-1)!*(-1)^(n-k-1)*binomial(n,k)*Stirling1(n+k,k)/(n+k)!). - Vladimir Kruchinin, Aug 14 2025

Extensions

Edited by Robert G. Wilson v, Sep 17 2002
a(0) = 0 prepended by Peter Luschny, Aug 15 2025

A262382 Numerators of a semi-convergent series leading to the first Stieltjes constant gamma_1.

Original entry on oeis.org

-1, 11, -137, 121, -7129, 57844301, -1145993, 4325053069, -1848652896341, 48069674759189, -1464950131199, 105020512675255609, -22404210159235777, 1060366791013567384441, -15899753637685210768473787, 2241672100026760127622163469, -8138835628210212414423299
Offset: 1

Views

Author

Keywords

Comments

gamma_1 = - 1/12 + 11/720 - 137/15120 + 121/11200 - 7129/332640 + 57844301/908107200 - ..., see formulas (46)-(47) in the reference below.

Examples

			Numerators of -1/12, 11/720, -137/15120, 121/11200, -7129/332640, 57844301/908107200, ...
		

Crossrefs

Cf. A001620, A002206, A195189, A075266, A262235, A001067, A006953, A082633, A262383 (denominators of this series), A086279, A086280, A262387.

Programs

  • Maple
    a := n -> numer(Zeta(1 - 2*n)*(Psi(2*n) + gamma)):
    seq(a(n), n=1..16); # Peter Luschny, Apr 19 2018
  • Mathematica
    a[n_] := Numerator[-BernoulliB[2*n]*HarmonicNumber[2*n - 1]/(2*n)]; Table[a[n], {n, 1, 20}]
  • PARI
    a(n) = numerator(-bernfrac(2*n)*sum(k=1,2*n-1,1/k)/(2*n)); \\ Michel Marcus, Sep 23 2015

Formula

a(n) = numerator(-B_{2n}*H_{2n-1}/(2n)), where B_n and H_n are Bernoulli and harmonic numbers respectively.
a(n) = numerator(Zeta(1 - 2*n)*(Psi(2*n) + gamma)), where gamma is Euler's gamma. - Peter Luschny, Apr 19 2018

A262383 Denominators of a semi-convergent series leading to the first Stieltjes constant gamma_1.

Original entry on oeis.org

12, 720, 15120, 11200, 332640, 908107200, 4324320, 2940537600, 175991175360, 512143632000, 1427794368, 7795757249280, 107084577600, 279490747536000, 200143324310529600, 1178332991611776000, 157531148611200, 906996615309386784000, 5828652498614400, 262872227687509440000
Offset: 1

Views

Author

Keywords

Comments

gamma_1 = - 1/12 + 11/720 - 137/15120 + 121/11200 - 7129/332640 + 57844301/908107200 - ..., see formulas (46)-(47) in the reference below.

Examples

			Denominators of -1/12, 11/720, -137/15120, 121/11200, -7129/332640, 57844301/908107200, ...
		

Crossrefs

Programs

  • Maple
    a := n -> denom(Zeta(1 - 2*n)*(Psi(2*n) + gamma)):
    seq(a(n), n=1..20); # Peter Luschny, Apr 19 2018
  • Mathematica
    a[n_] := Denominator[-BernoulliB[2*n]*HarmonicNumber[2*n - 1]/(2*n)]; Table[a[n], {n, 1, 20}]
  • PARI
    a(n) = denominator(-bernfrac(2*n)*sum(k=1,2*n-1,1/k)/(2*n)); \\ Michel Marcus, Sep 23 2015

Formula

a(n) = denominator(-B_{2n}*H_{2n-1}/(2n)), where B_n and H_n are Bernoulli and harmonic numbers respectively.
a(n) = denominator(Zeta(1 - 2*n)*(Psi(2*n) + gamma)), where gamma is Euler's gamma. - Peter Luschny, Apr 19 2018

A262387 Denominators of a semi-convergent series leading to the third Stieltjes constant gamma_3.

Original entry on oeis.org

1, 120, 1008, 28800, 49896, 101088000, 5702400, 12350257920000, 43480172736000, 7075668600000, 206069667148800, 5919216795588096000, 581222138112000, 8460252005694128640000, 18991807088644406016000, 1150594272774401495040000, 33940540399314092544000, 9737059611553100811150566400000, 1290633707289706940160000, 1263402804161736165764268432000000
Offset: 1

Views

Author

Keywords

Comments

gamma_3 = + 1/120 - 17/1008 + 967/28800 - 4523/49896 + 33735311/101088000 - ..., see formulas (46)-(47) in the reference below.

Examples

			Denominators of -0/1, 1/120, -17/1008, 967/28800, -4523/49896, 33735311/101088000, ...
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Denominator[-BernoulliB[2*n]*(HarmonicNumber[2*n - 1]^3 - 3*HarmonicNumber[2*n - 1]*HarmonicNumber[2*n - 1, 2] + 2*HarmonicNumber[2*n - 1, 3])/(2*n)]; Table[a[n], {n, 1, 20}]
  • PARI
    a(n) = denominator(-bernfrac(2*n)*(sum(k=1,2*n-1,1/k)^3 -3*sum(k=1,2*n-1,1/k)*sum(k=1,2*n-1,1/k^2) + 2*sum(k=1,2*n-1,1/k^3))/(2*n));

Formula

a(n) = denominator(-B_{2n}*(H^3_{2n-1}-3*H_{2n-1}*H^(2){2n-1}+2*H^(3){2n-1})/(2n)), where B_n, H_n and H^(k)_n are Bernoulli, harmonic and generalized harmonic numbers respectively.

A301816 Decimal expansion of the real Stieltjes gamma function at x = 1/2.

Original entry on oeis.org

2, 7, 5, 4, 3, 4, 7, 2, 4, 5, 6, 3, 9, 2, 0, 0, 7, 9, 9, 5, 5, 2, 8, 7, 8, 7, 7, 7, 9, 7, 8, 0, 6, 8, 3, 5, 7, 9, 8, 7, 0, 2, 3, 2, 3, 8, 8, 6, 3, 0, 7, 4, 8, 7, 3, 7, 3, 3, 2, 1, 1, 4, 7, 5, 1, 3, 3, 0, 6, 3, 4, 4, 1, 7, 3, 0, 6, 4, 6, 8, 8, 2, 2, 3, 5, 9, 2
Offset: 0

Views

Author

Peter Luschny, Apr 09 2018

Keywords

Comments

Define the real Stieltjes gamma function (this is not a standard notion) as Sti(x) = -2*Pi*I(x+1)/(x+1) where I(x) = Integral_{-infinity..+infinity} log(1/2+i*z)^x/(exp(-Pi*z) + exp(Pi*z))^2 dz and i is the imaginary unit. We look here at the real part of Sti(x).

Examples

			0.2754347245639200799552878777978068357987023238863074873733211475133063441...
		

Crossrefs

Sti(0) = A001620 (Euler's constant gamma) (cf. A262235/A075266),
Sti(1/2) = A301816,
Sti(1) = A082633 (Stieltjes constant gamma_1) (cf. A262382/A262383),
Sti(3/2) = A301817,
Sti(2) = A086279 (Stieltjes constant gamma_2) (cf. A262384/A262385),
Sti(3) = A086280 (Stieltjes constant gamma_3) (cf. A262386/A262387),
Sti(4) = A086281, Sti(5) = A086282, Sti(6) = A183141, Sti(7) = A183167,
Sti(8) = A183206, Sti(9) = A184853, Sti(10) = A184854.

Programs

  • Maple
    Sti := x -> (-4*Pi/(x + 1))*int(log(1/2 + I*z)^(x + 1)/(exp(-Pi*z) + exp(Pi*z))^2, z=0..64): Sti(1/2): Re(evalf(%, 100)); # Note that this is an approximation which needs a larger domain of integration and higher precision if used for more values than are in the Data section.

Formula

c = -Re((4/3)*Pi*Integral_{-oo..oo} log(1/2+i*z)^(3/2)/(exp(-Pi*z)+exp(Pi*z))^2 dz).

A262384 Numerators of a semi-convergent series leading to the second Stieltjes constant gamma_2.

Original entry on oeis.org

0, -1, 5, -469, 6515, -131672123, 63427, -47800416479, 15112153995391, -29632323552377537, 4843119962464267, -1882558877249847563479, 2432942522372150087, -2768809380553055597986831, 334463513629004852735064113, -1125061940756859461946444233539, 333807583501528759350875247323
Offset: 1

Views

Author

Keywords

Comments

gamma_2 = - 1/60 + 5/336 - 469/21600 + 6515/133056 - 131672123/825552000 + ..., see formulas (46)-(47) in the reference below.

Examples

			Numerators of 0/1, -1/60, 5/336, -469/21600, 6515/133056, -131672123/825552000, ...
		

Crossrefs

Programs

  • Maple
    a := n -> numer(-Zeta(1 - 2*n)*(Psi(1, 2*n) + (Psi(0,2*n) + gamma)^2 - (Pi^2)/6)):
    seq(a(n), n=1..17); # Peter Luschny, Apr 19 2018
  • Mathematica
    a[n_] := Numerator[BernoulliB[2*n]*(HarmonicNumber[2*n - 1]^2 - HarmonicNumber[2*n - 1, 2])/(2*n)]; Table[a[n], {n, 1, 20}]
  • PARI
    a(n) = numerator(bernfrac(2*n)*(sum(k=1,2*n-1,1/k)^2 - sum(k=1,2*n-1,1/k^2))/(2*n)); \\ Michel Marcus, Sep 23 2015

Formula

a(n) = numerator(B_{2n}*(H^2_{2n-1}-H^(2)_{2n-1})/(2n)), where B_n, H_n and H^(k)_n are Bernoulli, harmonic and generalized harmonic numbers respectively.
a(n) = numerator(-Zeta(1 - 2*n)*(Psi(1,2*n) + (Psi(0,2*n) + gamma)^2 - (Pi^2)/6)), where gamma is Euler's gamma and Psi is the digamma function. - Peter Luschny, Apr 19 2018

A262385 Denominators of a semi-convergent series leading to the second Stieltjes constant gamma_2.

Original entry on oeis.org

1, 60, 336, 21600, 133056, 825552000, 89100, 11435424000, 483113030400, 101889627840000, 1471926193920, 42280119968486400, 3425059028160, 209827678712652000, 1184296360402995840, 163066081742403840000, 1749151741873536000, 20373357051590182072392960000
Offset: 1

Views

Author

Keywords

Comments

gamma_2 = - 1/60 + 5/336 - 469/21600 + 6515/133056 - 131672123/825552000 + ..., see formulas (46)-(47) in the reference below.

Examples

			Denominators of 0/1, -1/60, 5/336, -469/21600, 6515/133056, -131672123/825552000, ...
		

Crossrefs

Programs

  • Maple
    a := n -> denom(-Zeta(1 - 2*n)*(Psi(1, 2*n) + (Psi(0,2*n) + gamma)^2 - (Pi^2)/6)):
    seq(a(n), n=1..18); # Peter Luschny, Apr 19 2018
  • Mathematica
    a[n_] := Denominator[BernoulliB[2*n]*(HarmonicNumber[2*n - 1]^2 - HarmonicNumber[2*n - 1, 2])/(2*n)]; Table[a[n], {n, 1, 20}]
  • PARI
    a(n) = denominator(bernfrac(2*n)*(sum(k=1,2*n-1,1/k)^2 - sum(k=1,2*n-1,1/k^2))/(2*n)); \\ Michel Marcus, Sep 23 2015

Formula

a(n) = denominator(B_{2n}*(H^2_{2n-1}-H^(2)_{2n-1})/(2n)), where B_n, H_n and H^(k)_n are Bernoulli, harmonic and generalized harmonic numbers respectively.
a(n) = denominator(-Zeta(1 - 2*n)*(Psi(1,2*n) + (Psi(0,2*n) + gamma)^2 - (Pi^2)/6)), where gamma is Euler's gamma and Psi is the digamma function. - Peter Luschny, Apr 19 2018
Showing 1-10 of 13 results. Next