cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A001620 Decimal expansion of Euler's constant (or the Euler-Mascheroni constant), gamma.

Original entry on oeis.org

5, 7, 7, 2, 1, 5, 6, 6, 4, 9, 0, 1, 5, 3, 2, 8, 6, 0, 6, 0, 6, 5, 1, 2, 0, 9, 0, 0, 8, 2, 4, 0, 2, 4, 3, 1, 0, 4, 2, 1, 5, 9, 3, 3, 5, 9, 3, 9, 9, 2, 3, 5, 9, 8, 8, 0, 5, 7, 6, 7, 2, 3, 4, 8, 8, 4, 8, 6, 7, 7, 2, 6, 7, 7, 7, 6, 6, 4, 6, 7, 0, 9, 3, 6, 9, 4, 7, 0, 6, 3, 2, 9, 1, 7, 4, 6, 7, 4, 9
Offset: 0

Views

Author

Keywords

Comments

Yee (2010) computed 29844489545 decimal digits of gamma.
Decimal expansion of 0th Stieltjes constant. - Paul Muljadi, Aug 24 2010
The value of Euler's constant is close to (18/Pi^2)*Sum_{n>=0} 1/4^(2^n) = 0.5770836328... = (6/5) * A082020 * A078585. - Arkadiusz Wesolowski, Mar 27 2012

Examples

			0.577215664901532860606512090082402431042...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 3.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 24, 259-262.
  • S. R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, pp. 28-40, 166, 365.
  • C. F. Gauss, Disquisitiones Arithmeticae, Yale, 1965; see p. 359.
  • B. Gugger, Problèmes corrigés de Mathématiques posés aux concours des Ecoles Militaires, Ecole de l'Air, 1992, option MP, 1ère épreuve, Ellipses, 1993, pp. 167-184.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §8.3 Infinite Series, pp. 273-274.
  • J. Havil, Gamma: Exploring Euler's Constant, Princeton Univ. Press, 2003.
  • J.-M. Monier, Analyse, Exercices corrigés, 2ème année, MP, Dunod, Exercice 4.3.14, pages 371 and 387, 1997.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 166.
  • Joel L. Schiff, The Laplace Transform: Theory and Applications, Springer-Verlag New York, Inc. (1999). See p. 44.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 1, equation 1:7:5 at page 13.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987, p. 28.
  • E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Cambridge Univ. Press, 4th ed., 1990.

Crossrefs

Cf. A002852 (continued fraction).
Cf. A073004 (exp(gamma)) and A094640 ("alternating Euler constant").
Cf. A231095 (power tower using this constant).
Denote the generalized Euler constants, also called Stieltjes constants, by Sti(n).
Sti(0) = A001620 (Euler's constant gamma) (cf. A262235/A075266),
Sti(1/2) = A301816, Sti(1) = A082633 (cf. A262382/A262383), Sti(3/2) = A301817,
Sti(2) = A086279 (cf. A262384/A262385), Sti(3) = A086280 (cf. A262386/A262387),
Sti(4) = A086281, Sti(5) = A086282, Sti(6) = A183141, Sti(7) = A183167,
Sti(8) = A183206, Sti(9) = A184853, Sti(10) = A184854.

Programs

  • Magma
    EulerGamma(250); // G. C. Greubel, Aug 21 2018
    
  • Maple
    Digits := 100; evalf(gamma);
  • Mathematica
    RealDigits[ EulerGamma, 10, 105][[1]] (* Robert G. Wilson v, Nov 01 2004 *)
    (1/2) N[Sum[PolyGamma[0, 1/2 + 2^k] - PolyGamma[0, 2^k], {k, 0, Infinity }], 30] (* Dimitri Papadopoulos, Nov 30 2016 *)
  • PARI
    default(realprecision, 20080); x=Euler; d=0; for (n=0, 20000, x=(x-d)*10; d=floor(x); write("b001620.txt", n, " ", d));  \\ Harry J. Smith, Apr 15 2009
    
  • Python
    from sympy import S
    def aupton(digs): return [int(d) for d in str(S.EulerGamma.n(digs+2))[2:-2]]
    print(aupton(99)) # Michael S. Branicky, Nov 22 2021

Formula

Limit_{n->oo} (1 + 1/2 + ... + 1/n - log(n)) (definition).
Sum_{n>=1} (1/n - log(1 + 1/n)), since log(1 + 1/1) + ... + log(1 + 1/n) telescopes to log(n+1) and lim_{n->infinity} (log(n+1) - log(n)) = 0.
Integral_{x=0..1} -log(log(1/x)). - Robert G. Wilson v, Jan 04 2006
Integral_{x=0..1,y=0..1} (x-1)/((1-x*y)*log(x*y)). - (see Sondow 2005)
Integral_{x=0..oo} -log(x)*exp(-x). - Jean-François Alcover, Mar 22 2013
Integral_{x=0..1} (1 - exp(-x) - exp(-1/x))/x. - Jean-François Alcover, Apr 11 2013
Equals the lim_{n->oo} fractional part of zeta(1+1/n). The corresponding fractional part for x->1 from below, using n-1/n, is -(1-a(n)). The fractional part found in this way for the first derivative of Zeta as x->1 is A252898. - Richard R. Forberg, Dec 24 2014
Limit_{x->1} (Zeta(x)-1/(x-1)) from Whittaker and Watson. 1990. - Richard R. Forberg, Dec 30 2014
exp(gamma) = lim_{i->oo} exp(H(i)) - exp(H(i-1)), where H(i) = i-th Harmonic number. For a given n this converges faster than the standard definition, and two above, after taking the logarithm (e.g., 13 digits vs. 6 digits at n=3000000 or x=1+1/3000000). - Richard R. Forberg, Jan 08 2015
Limit_{n->oo} (1/2) Sum_{j>=1} Sum_{k=1..n} ((1 - 2*k + 2*n)/((-1 + k + j*n) (k + j*n))). - Dimitri Papadopoulos, Jan 13 2016
Equals 25/27 minus lim_{x->oo} 2^(x+1)/3 - (22/27)*(4/3)^x - Zeta(Sum_{i>=1} (H_i/i^x)), letting H_i denote the i-th harmonic number. - John M. Campbell, Jan 29 2016
Limit_{x->0} -B'(x), where B(x) = -x zeta(1-x) is the "Bernoulli function". - Jean-François Alcover, May 20 2016
Sum_{k>=0} (1/2)(digamma(1/2+2^k) - digamma(2^k)) where digamma(x) = d/dx log(Gamma(x)). - Dimitri Papadopoulos, Nov 14 2016
Using the abbreviations a = log(z^2 + 1/4)/2, b = arctan(2*z) and c = cosh(Pi*z) then gamma = -Pi*Integral_{0..oo} a/c^2. The general case is for n >= 0 (which includes Euler's gamma as gamma_0) gamma_n = -(Pi/(n+1))* Integral_{0..oo} sigma(n+1)/c^2, where sigma(n) = Sum_{k=0..floor(n/2)} (-1)^k*binomial(n,2*k)*b^(2*k) *a^(n-2*k). - Peter Luschny, Apr 19 2018
Limit_{s->0} (Zeta'(1-s)*s - Zeta(1-s)) / (Zeta(1-s)*s). - Peter Luschny, Jun 18 2018
log(2) * (gamma - (1/2) * log(2)) = -Sum_{v >= 1} (1/2^(v+1)) * (Delta^v (log(w)/w))|{w=1}, where Delta(f(w)) = f(w) - f(w + 1) (forward difference). [This is a formula from Lerch (1897).] - _Petros Hadjicostas, Jul 21 2019
From Amiram Eldar, Jul 05 2020: (Start)
Equals Integral_{x=1..oo} (1/floor(x) - 1/x) dx.
Equals Integral_{x=0..1} (1/(1-x) + 1/log(x)) dx = Integral_{x=0..1} (1/x + 1/log(1-x)) dx.
Equals -Integral_{-oo..oo} x*exp(x-exp(x)) dx.
Equals Sum_{k>=1} (-1)^k * floor(log_2(k))/k.
Equals (-1/2) * Sum_{k>=1} (Lambda(k)-1)/k, where Lambda is the Mangoldt function. (End)
Equals Integral_{0..1} -1/LambertW(-1,-x*exp(-x)) dx = 1 + Integral_{0..1} LambertW(-1/x*exp(-1/x)) dx. - Gleb Koloskov, Jun 12 2021
Equals Sum_{k>=2} (-1)^k * zeta(k)/k. - Vaclav Kotesovec, Jun 19 2021
Equals lim_{x->oo} log(x) - Sum_{p prime <= x} log(p)/(p-1). - Amiram Eldar, Jun 29 2021
Limit_{n->oo} (2*HarmonicNumber(n) - HarmonicNumber(n^2)). After answer by Eric Naslund on Mathematics Stack Exchange, on Jun 21 2011. - Mats Granvik, Jul 19 2021
Equals Integral_{x=0..oo} ( exp(-x) * (1/(1-exp(-x)) - 1/x) ) dx (see Gugger or Monier). - Bernard Schott, Nov 21 2021
Equals 1/2 + Limit_{s->1} (Zeta(s) + Zeta(1/s))/2. - Thomas Ordowski, Jan 12 2023
Equals Sum_{j>=2} Sum_{k>=2} ((k-1)/(k*j^k)). - Mike Tryczak, Apr 06 2023
From Stefano Spezia, Oct 27 2024: (Start)
Equals Sum_{n>=1} n*(zeta(n+1) - 1)/(n + 1) [Euler] (see Finch at p. 30).
Equals lim_{n->oo} Sum_{prime p<=n} log(p/(p - 1)) - log(log(n)) (see Finch at p. 31). (End)
Equals lim_{s->1} zeta(s) - zeta(s)^2/zeta(2*s - 1)/2. - Mats Granvik, Jul 07 2025

A020777 Decimal expansion of (-1)*Gamma'(1/4)/Gamma(1/4) where Gamma(x) denotes the Gamma function.

Original entry on oeis.org

4, 2, 2, 7, 4, 5, 3, 5, 3, 3, 3, 7, 6, 2, 6, 5, 4, 0, 8, 0, 8, 9, 5, 3, 0, 1, 4, 6, 0, 9, 6, 6, 8, 3, 5, 7, 7, 3, 6, 7, 2, 4, 4, 4, 3, 8, 7, 0, 8, 2, 4, 2, 2, 7, 1, 6, 5, 5, 2, 7, 9, 5, 5, 9, 5, 1, 8, 9, 5, 6, 7, 9, 5, 8, 2, 9, 8, 5, 3, 3, 1, 7, 0, 6, 8, 5, 5, 4, 4, 5, 6, 9, 5, 2, 0, 6, 1, 3, 4, 6, 1, 3, 1, 7, 0
Offset: 1

Views

Author

Benoit Cloitre, May 24 2003

Keywords

Examples

			4.2274535333762654080895301460966835773672444387082422716552795595189567958...
		

References

  • S.J. Patterson, "An introduction to the theory of the Riemann zeta function", Cambridge studies in advanced mathematics no. 14, p. 135, 1995.

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); EulerGamma(R) + Pi(R)/2 + Log(8); // G. C. Greubel, Aug 28 2018
  • Maple
    evalf(gamma+3*log(2)+Pi/2) ; # R. J. Mathar, Nov 13 2011
    evalf(abs(Psi(1/4))) ; # R. J. Mathar, Nov 19 2024
  • Mathematica
    EulerGamma + Pi/2 + Log[8] // RealDigits[#, 10, 105][[1]] & (* Jean-François Alcover, Jun 18 2013 *)
    N[StieltjesGamma[0, 1/4], 99] (* Peter Luschny, May 16 2018 *)
  • PARI
    Euler+3*log(2)+Pi/2
    

Formula

Gamma'(1/4)/Gamma(1/4) = -EulerGamma - 3*log(2) - Pi/2 where EulerGamma is the Euler-Mascheroni constant (A001620).
Pi = gamma(0,1/4) - gamma(0,3/4) = A020777 - A200134, where gamma(n,x) denotes the generalized Stieltjes constants. - Peter Luschny, May 16 2018

A200134 Decimal expansion of the negated value of the digamma function at 3/4.

Original entry on oeis.org

1, 0, 8, 5, 8, 6, 0, 8, 7, 9, 7, 8, 6, 4, 7, 2, 1, 6, 9, 6, 2, 6, 8, 8, 6, 7, 6, 2, 8, 1, 7, 1, 8, 0, 6, 9, 3, 1, 7, 0, 0, 7, 5, 0, 3, 9, 3, 3, 3, 1, 3, 6, 4, 5, 0, 6, 8, 0, 3, 3, 4, 9, 6, 7, 2, 1, 1, 1, 4, 0, 3, 8, 9, 5, 4, 3, 6, 4, 4, 3, 1, 8, 4, 4, 0, 5, 1, 9, 6, 3, 1, 6, 0, 9, 9, 4, 4
Offset: 1

Views

Author

R. J. Mathar, Nov 13 2011

Keywords

Examples

			Psi(3/4) = -1.085860879786472169626886762817...
		

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); -EulerGamma(R) + Pi(R)/2 - 3*Log(2); // G. C. Greubel, Aug 29 2018
  • Maple
    evalf(-gamma+Pi/2-3*log(2)) ;
  • Mathematica
    RealDigits[ -PolyGamma[3/4], 10, 97] // First (* Jean-François Alcover, Feb 20 2013 *)
    N[StieltjesGamma[0, 3/4], 99] (* Peter Luschny, May 16 2018 *)
  • PARI
    -psi(3/4) \\ Charles R Greathouse IV, Nov 22 2011
    

Formula

Psi(3/4) = -gamma + Pi/2 - 3*log(2) = A000796 - A020777 = 3.14159... - 4.22745...
Pi = gamma(0,1/4) - gamma(0,3/4) = A020777 - A200134, where gamma(n,x) denotes the generalized Stieltjes constants. - Peter Luschny, May 16 2018

A301817 Decimal expansion of the real Stieltjes gamma function at x = 3/2, negated.

Original entry on oeis.org

1, 0, 6, 1, 6, 8, 0, 2, 5, 1, 8, 3, 3, 8, 8, 3, 3, 0, 9, 1, 1, 8, 0, 4, 1, 1, 6, 1, 4, 3, 4, 5, 5, 3, 0, 8, 3, 6, 0, 6, 7, 2, 6, 4, 6, 3, 2, 8, 2, 7, 6, 0, 8, 8, 1, 7, 3, 1, 3, 9, 6, 4, 9, 1, 6, 4, 7, 1, 5, 1, 9, 3, 4, 5, 4, 2, 2, 6, 1, 1, 8, 9, 9, 4, 6, 4, 4
Offset: 0

Views

Author

Peter Luschny, Apr 09 2018

Keywords

Comments

See A301816 for comments and references.

Examples

			c = 0.1061680251833883309118041161434553083606726463282760881731396491647151...
		

Crossrefs

Cf. A301816.

Programs

  • Maple
    Sti := x -> (4*Pi/(x + 1))*int(log(1/2 + I*z)^(x + 1)/(exp(-Pi*z) + exp(Pi*z))^2, z=0..64): Sti(3/2): Re(evalf(%,100)); # Note that this is an approximation which needs a larger domain of integration and higher precision if used for more values than are in the Data section.

Formula

c = Re((4/5)*Pi*Integral_{-oo..oo} log(1/2+i*z)^(5/2)/(exp(-Pi*z)+exp(Pi*z))^2 dz) where i is the imaginary unit.

A301815 Decimal expansion of gamma / (2*Pi), where gamma is Euler's constant A001620.

Original entry on oeis.org

0, 9, 1, 8, 6, 6, 7, 2, 6, 2, 9, 9, 1, 5, 3, 9, 9, 0, 3, 7, 9, 6, 4, 2, 2, 3, 4, 0, 7, 1, 8, 7, 8, 0, 9, 1, 4, 1, 3, 6, 2, 9, 2, 8, 0, 5, 6, 0, 6, 4, 1, 2, 1, 2, 3, 6, 1, 0, 8, 7, 2, 0, 8, 3, 7, 4, 5, 6, 2, 8, 1, 9, 3, 4, 9, 6, 1, 8, 0, 7, 0, 6, 2, 9, 2, 3, 4, 6
Offset: 0

Views

Author

Peter Luschny, Apr 13 2018

Keywords

Examples

			Equals 0.0918667262991539903796422340718780914136292805606412123610872...
		

Crossrefs

Programs

  • Magma
    R:=RealField(100); EulerGamma(R)/(2*Pi(R)); // G. C. Greubel, Aug 27 2018
  • Maple
    evalf(gamma(0)/(2*Pi), 100);
  • Mathematica
    RealDigits[EulerGamma/(2*Pi), 10, 100][[1]] (* G. C. Greubel, Aug 11 2018 *)
  • PARI
    Euler/(2*Pi) \\ Altug Alkan, Apr 13 2018
    

Formula

Let beta(r) be the real part of Integral_{-oo..oo} (log(1/2 + i*z)^r / (exp(-Pi*z) + exp(Pi*z))^2) dz, where i denotes the imaginary unit. The constant equals -beta(1) and A301814 equals beta(1/2).

A301813 Decimal expansion of Integral_{-infinity..infinity} -log((z^2+1/4)^(1/4))* sech(Pi*z)^2 dz.

Original entry on oeis.org

1, 8, 3, 7, 3, 3, 4, 5, 2, 5, 9, 8, 3, 0, 7, 9, 8, 0, 7, 5, 9, 2, 8, 4, 4, 6, 8, 1, 4, 3, 7, 5, 6, 1, 8, 2, 8, 2, 7, 2, 5, 8, 5, 6, 1, 1, 2, 1, 2, 8, 2, 4, 2, 4, 7, 2, 2, 1, 7, 4, 4, 1, 6, 7, 4, 9, 1, 2, 5
Offset: 0

Views

Author

Peter Luschny, Apr 18 2018

Keywords

Examples

			0.183733452598307980759284468143756182827258561121282424722174416749125638699...
		

Crossrefs

Programs

  • Magma
    R:= RealField(100); EulerGamma(R)/Pi(R); // G. C. Greubel, Sep 05 2018
  • Maple
    evalf(gamma/Pi, 20);
    g := -int(log(z^2+1/4)*sech(Pi*z)^2/4, z=-10..10); evalf(g, 20);
    # This is an approximation. For more valid decimal digits the
    # range of integration and the precision must be increased.
  • Mathematica
    RealDigits[EulerGamma/Pi, 10, 40] [[1]]
  • PARI
    Euler/Pi \\ Altug Alkan, Apr 18 2018
    

Formula

Equals EulerGamma / Pi.
Equals Integral_{0..infinity} -log(sqrt(z^2 + 1/4))/cosh(Pi*z)^2 dz.

A303638 Coefficients of a representation of gamma_{n-1}(1) - gamma_{n-1}(n) where gamma_n(x) are the generalized Euler-Stieltjes constants, triangle read by rows, for n >= 1 and 0 <= k <= n-1.

Original entry on oeis.org

1, 2, 0, 6, 0, 3, 24, 0, 12, 8, 120, 0, 540, 40, 0, 720, 0, 6120, 240, 0, 144, 5040, 0, 83160, 1680, 0, 1008, 840, 40320, 0, 1310400, 13440, 0, 8064, 6720, 5760, 362880, 0, 321012720, 120960, 0, 72576, 60480, 51840, 0, 3628800, 0, 9394509600, 207648000, 0, 725760, 604800, 518400, 0, 0
Offset: 1

Views

Author

Peter Luschny, Apr 27 2018

Keywords

Examples

			The triangle starts:
[n\k][      0  1           2          3  4       5       6       7  8  9]
[ 1] [      1]
[ 2] [      2, 0]
[ 3] [      6, 0,          3]
[ 4] [     24, 0,         12,         8]
[ 5] [    120, 0,        540,        40, 0]
[ 6] [    720, 0,       6120,       240, 0,    144]
[ 7] [   5040, 0,      83160,      1680, 0,   1008,    840]
[ 8] [  40320, 0,    1310400,     13440, 0,   8064,   6720,   5760]
[ 9] [ 362880, 0,  321012720,    120960, 0,  72576,  60480,  51840, 0]
[10] [3628800, 0, 9394509600, 207648000, 0, 725760, 604800, 518400, 0, 0]
		

Crossrefs

See the cross-references in A301816 for the values of some Stieltjes constants.
Row sums are A303938.

Programs

  • Maple
    Trow := proc(n) local h, r, e, f;
    h := (n, k) -> `if`(k = 1, x[0], h(n, k-1) - log(k-1)^n/(k-1));
    r := `if`(n = 0, 1, n!*h(n-1,n)); f := k -> (-x[k])^(1/(n-1));
    e := eval(subs(ln = f, r)); seq(coeff(e, x[i]), i=0..n-1) end:
    seq(Trow(n), n=1..10);
    # Alternative:
    T := proc(n, k) local ispp, omega:
      omega := n -> nops(numtheory:-factorset(n)):
      ispp  := n -> not isprime(n) and omega(n) = 1:
      if k = 0 then return n! fi;
      if isprime(k) then
         add(v^(n-1)*k^(-v), v=1..ilog[k](n-1)):
         return n!*% fi:
      if k = 1 or ispp(k) then return 0 fi:
      return n!/k end:
    seq(seq(T(n,k), k=(0..n-1)), n=1..10);
  • Mathematica
    T[n_, k_] := Module[{s}, If[k == 0, Return[n!]]; If[PrimeQ[k], s = Sum[v^(n-1) k^(-v), {v, 1, Log[k, n-1]}]; Return[n! s]]; If[k == 1 || PrimePowerQ[k], Return[0]]; n!/k];
    Table[T[n, k], {n, 1, 10}, {k, 0, n-1}] // Flatten (* Jean-François Alcover, Jul 22 2019, from 2nd Maple program *)

Formula

gamma_{n-1}(1) - gamma_{n-1}(n) = (1/n!) Sum_{k=1..n-1} T(n,k)*(log(k))^(n-1) where T(n, k) = 0 if k is a prime power (in the sense of A025475).
-Gamma(n)*B^(n)(0,n) = n!*gamma_{n-1} - Sum_{k=1..n-1} T(n,k)(log(k))^(n-1) where Gamma(n) is Euler's Gamma function and B^(n)(0,n) is the n-th derivative of the generalized Bernoulli function B(s, a) with respect to s.
Four cases can be distinguished:
(1) If k=0 then T(n, k) = n!,
(2) else if k is prime then T(n, k) = Sum_{v=1..m} v^(n-1)*k^(-v) where m = ilog_k(n-1) and ilog is the integer base k logarithm,
(3) else if k is a prime power in the sense of A025475 then T(n, k) = 0,
(4) else (k is composite but not a prime power) T(n, k) = n!/k.
Showing 1-7 of 7 results.