cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A020777 Decimal expansion of (-1)*Gamma'(1/4)/Gamma(1/4) where Gamma(x) denotes the Gamma function.

Original entry on oeis.org

4, 2, 2, 7, 4, 5, 3, 5, 3, 3, 3, 7, 6, 2, 6, 5, 4, 0, 8, 0, 8, 9, 5, 3, 0, 1, 4, 6, 0, 9, 6, 6, 8, 3, 5, 7, 7, 3, 6, 7, 2, 4, 4, 4, 3, 8, 7, 0, 8, 2, 4, 2, 2, 7, 1, 6, 5, 5, 2, 7, 9, 5, 5, 9, 5, 1, 8, 9, 5, 6, 7, 9, 5, 8, 2, 9, 8, 5, 3, 3, 1, 7, 0, 6, 8, 5, 5, 4, 4, 5, 6, 9, 5, 2, 0, 6, 1, 3, 4, 6, 1, 3, 1, 7, 0
Offset: 1

Views

Author

Benoit Cloitre, May 24 2003

Keywords

Examples

			4.2274535333762654080895301460966835773672444387082422716552795595189567958...
		

References

  • S.J. Patterson, "An introduction to the theory of the Riemann zeta function", Cambridge studies in advanced mathematics no. 14, p. 135, 1995.

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); EulerGamma(R) + Pi(R)/2 + Log(8); // G. C. Greubel, Aug 28 2018
  • Maple
    evalf(gamma+3*log(2)+Pi/2) ; # R. J. Mathar, Nov 13 2011
    evalf(abs(Psi(1/4))) ; # R. J. Mathar, Nov 19 2024
  • Mathematica
    EulerGamma + Pi/2 + Log[8] // RealDigits[#, 10, 105][[1]] & (* Jean-François Alcover, Jun 18 2013 *)
    N[StieltjesGamma[0, 1/4], 99] (* Peter Luschny, May 16 2018 *)
  • PARI
    Euler+3*log(2)+Pi/2
    

Formula

Gamma'(1/4)/Gamma(1/4) = -EulerGamma - 3*log(2) - Pi/2 where EulerGamma is the Euler-Mascheroni constant (A001620).
Pi = gamma(0,1/4) - gamma(0,3/4) = A020777 - A200134, where gamma(n,x) denotes the generalized Stieltjes constants. - Peter Luschny, May 16 2018

A200135 Decimal expansion of the negated value of the digamma function at 1/5.

Original entry on oeis.org

5, 2, 8, 9, 0, 3, 9, 8, 9, 6, 5, 9, 2, 1, 8, 8, 2, 9, 5, 5, 4, 7, 2, 0, 7, 9, 6, 2, 4, 4, 9, 9, 5, 2, 1, 0, 4, 8, 2, 5, 5, 8, 8, 2, 7, 4, 2, 0, 6, 6, 4, 2, 8, 1, 0, 1, 7, 5, 8, 5, 8, 6, 6, 4, 1, 9, 1, 6, 2, 4, 7, 5, 4, 0, 9, 1, 6, 1, 9, 6, 5, 2, 5, 4, 6, 5, 7, 7, 8, 2, 4, 3, 1, 9, 5, 7, 0, 3, 6, 2, 4, 1, 2, 4, 0
Offset: 1

Views

Author

R. J. Mathar, Nov 13 2011

Keywords

Examples

			Psi(1/5) =  -5.289039896592188295547207962...
		

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); -EulerGamma(R) -Pi(R)*Sqrt(1+2/Sqrt(5))/2 -5*Log(5)/4 -Sqrt(5)/4*Log((3+Sqrt(5)/2) ); // G. C. Greubel, Sep 03 2018
  • Maple
    -gamma-Pi*sqrt(1+2/sqrt(5))/2-5*log(5)/4-sqrt(5)/4*log((3+sqrt(5)/2) ); evalf(%) ;
  • Mathematica
    RealDigits[-PolyGamma[1/5], 10, 105] // First (* Jean-François Alcover, Feb 11 2013 *)
  • PARI
    -psi(1/5) \\ Charles R Greathouse IV, Jul 19 2013
    

Formula

Psi(1/5) = -gamma - Pi*sqrt(1 + 2/sqrt(5))/2 - 5*log(5)/4 -sqrt(5)*log((3 + sqrt(5))/2)/4 where gamma = A001620, sqrt(1 + 2/sqrt(5)) = A019952, (3 + sqrt(5))/2 = A104457.

Extensions

More terms from Jean-François Alcover, Feb 11 2013

A200138 Decimal expansion of the negated value of the digamma function at 4/5.

Original entry on oeis.org

9, 6, 5, 0, 0, 8, 5, 6, 6, 7, 0, 6, 1, 3, 8, 4, 5, 9, 3, 9, 1, 2, 9, 7, 6, 3, 3, 1, 5, 6, 8, 3, 5, 4, 1, 9, 6, 3, 4, 1, 6, 0, 4, 8, 9, 6, 9, 5, 2, 2, 2, 8, 2, 9, 1, 0, 9, 8, 1, 0, 7, 9, 4, 2, 4, 4, 9, 6, 1, 2, 0, 7, 3, 8, 5, 6, 8, 4, 0, 0, 4, 3, 0, 6, 3, 7, 6
Offset: 0

Views

Author

R. J. Mathar, Nov 13 2011

Keywords

Examples

			Psi(4/5) = -0.965008566706138459391297633...
		

Crossrefs

Programs

  • Maple
    -gamma+Pi*sqrt(1+2/sqrt(5))/2-5*log(5)/4-sqrt(5)/4*log(3/2+sqrt(5)/2) ; evalf(%) ;
  • Mathematica
    RealDigits[ -PolyGamma[4/5], 10, 87] // First (* Jean-François Alcover, Feb 20 2013 *)
  • PARI
    -psi(4/5) \\ Charles R Greathouse IV, Nov 22 2011

Formula

Psi(4/5) = -gamma + Pi*sqrt(1+2/sqrt 5)/2 -5*log(5)*log((3+sqrt 5)/2)/4.

A074638 Denominator of 1/3 + 1/7 + 1/11 + ... + 1/(4n-1).

Original entry on oeis.org

3, 21, 231, 385, 7315, 168245, 4542615, 140821065, 28164213, 366134769, 15743795067, 739958368149, 12579292258533, 62896461292665, 3710891216267235, 3710891216267235, 248629711489904745, 17652709515783236895, 88263547578916184475, 6972820258734378573525
Offset: 1

Views

Author

Robert G. Wilson v, Aug 27 2002

Keywords

Comments

This s(n) := Sum_{j=0..n-1} 1/(4*j + 3), for n >= 1, equals (Psi(n + 3/4) - Psi(3/4))/4, with the digamma function Psi(z). See Abramowitz-Stegun, p. 258, eqs. 6.3.7 and 6.3.5, with z -> 3/4. A200134 = -Psi(3/4). - Wolfdieter Lang, Apr 06 2022

Crossrefs

The numerators times 4 are A074637.

Programs

  • Mathematica
    Table[ Denominator[ Sum[1/i, {i, 3/4, n}]], {n, 1, 20}]
  • PARI
    a(n) = denominator(sum(i=1, n, 1/(4*i-1))); \\ Michel Marcus, Mar 21 2021
  • Python
    from fractions import Fraction
    def a(n): return sum(Fraction(1, 4*i-1) for i in range(1, n+1)).denominator
    print([a(n) for n in range(1, 21)]) # Michael S. Branicky, Mar 21 2021
    

Formula

Denominator( (Psi(n + 3/4) - Psi(3/4))/4 ). See the comment above. - Wolfdieter Lang, Apr 05 2022

A200137 Decimal expansion of the negated digamma function at 3/5.

Original entry on oeis.org

1, 5, 4, 0, 6, 1, 9, 2, 1, 3, 8, 9, 3, 1, 9, 0, 4, 1, 4, 7, 6, 0, 6, 6, 3, 9, 4, 8, 8, 0, 6, 2, 3, 1, 9, 4, 1, 5, 1, 0, 5, 3, 4, 2, 5, 4, 6, 8, 9, 6, 0, 7, 2, 0, 8, 2, 6, 6, 6, 8, 5, 2, 6, 3, 2, 6, 1, 1, 6, 8, 8, 4, 1, 2, 4, 1, 1, 0, 2, 4, 6, 6, 0, 7, 3, 3, 4, 2, 4, 6, 7, 7, 1, 9, 7, 7, 8, 8, 2, 0, 1, 0, 0, 5, 7
Offset: 1

Views

Author

R. J. Mathar, Nov 13 2011

Keywords

Examples

			Psi(3/5) = -1.540619213893190414760663948806231941510...
		

Crossrefs

Programs

  • Maple
    -gamma+Pi*sqrt(1-2/sqrt(5))/2-5*log(5)/4+sqrt(5)/4*log(3/2+sqrt(5)/2) ; evalf(%) ;
  • Mathematica
    RealDigits[-PolyGamma[3/5], 10, 105] // First (* Jean-François Alcover, Feb 11 2013 *)
  • PARI
    -psi(3/5) \\ Charles R Greathouse IV, Jul 19 2013

Formula

Psi(3/5) = -gamma +Pi*sqrt( 1-2/sqrt 5)/2 -5*log(5)/4 +sqrt(5)*log((3+sqrt 5)/2)/4.

Extensions

More terms from Jean-François Alcover, Feb 11 2013

A352395 Denominator of Sum_{k=0..n} (-1)^k / (2*k+1).

Original entry on oeis.org

1, 3, 15, 105, 315, 3465, 45045, 45045, 765765, 14549535, 14549535, 334639305, 1673196525, 5019589575, 145568097675, 4512611027925, 4512611027925, 4512611027925, 166966608033225, 166966608033225, 6845630929362225, 294362129962575675, 294362129962575675, 13835020108241056725
Offset: 0

Views

Author

Wolfdieter Lang, Apr 06 2022

Keywords

Comments

This is not the sequence A025547(n+1)_{n>=0}, because a(32) = 1420993851085122917681925 but A025547(33) = 18472920064106597929865025. Hence it is also not the sequence A350670.
The alternating sum Sum_{k=0..n} (-1)^k/(2*k+1) = (Psi(n + 3/2) - Psi((2*n - (-1)^n)/4 + 1) - log(2) + Pi/2)/2, with the Digamma function Psi(z).
Proof by subtracting twice the negative fractions from Sum_{k=0..n} 1/(2*k+1) = A350669(n)/A350670(n) (Abramowitz-Stegun, p. 258, eq. 6.3.4.), using Sum_{j=0..k} 1/(4*j + 3) = A074637((k+1)/4)/A074638(k+1) (Abramowitz-Stegun, p. 258, eqs. 6.3.6. with 6.3.5.) and, finally, replacing in the results for the even and odd n cases the formula for Psi(3/4) = -A200134.

Crossrefs

Cf. A007509 (numerators).

Programs

  • Mathematica
    Denominator @ Accumulate @ Table[(-1)^k/(2*k + 1), {k, 0, 25}] (* Amiram Eldar, Apr 08 2022 *)
  • PARI
    a(n) = denominator(sum(k=0, n, (-1)^k / (2*k+1))); \\ Michel Marcus, Apr 07 2022
    
  • Python
    from fractions import Fraction
    def A352395(n): return sum(Fraction(-1 if k % 2 else 1,2*k+1) for k in range(n+1)).denominator # Chai Wah Wu, May 18 2022

Formula

a(n) = denominator( (Psi(n + 3/2) - Psi((2*n - (-1)^n)/4 + 1) - log(2) + Pi/2)/2), for n >= 0, with the Digamma function. See the above comment.
a(n) = denominator(Pi/4 + (-1)^n * (Psi((n + 5/2)/2) - Psi((n + 3/2)/2))/4). - Vaclav Kotesovec, May 16 2022

A375772 Decimal expansion of the absolute value of the second derivative of the digamma function at 3/4.

Original entry on oeis.org

5, 3, 0, 2, 6, 3, 3, 2, 1, 6, 3, 3, 7, 6, 3, 9, 6, 3, 1, 4, 3, 2, 7, 0, 6, 9, 1, 0, 4, 3, 8, 4, 0, 9, 0, 7, 8, 3, 8, 8, 6, 5, 5, 2, 3, 9, 2, 9, 7, 7, 2, 1, 9, 9, 2, 0, 7, 8, 1, 3, 0, 8, 9, 1, 5, 3, 0, 1, 4, 9, 6, 8, 9, 1, 0, 2, 1, 2, 0, 9, 7, 5, 3, 0, 8, 1, 2, 6, 8, 5, 6, 9, 1, 7, 0, 0, 2, 0, 7, 0, 1, 2, 6, 9, 0
Offset: 1

Views

Author

R. J. Mathar, Aug 27 2024

Keywords

Examples

			psi''(3/4) = -5.3026332163376396314327...
		

Crossrefs

Cf. A200134 (psi(3/4)), A282824 (psi'(3/4)).

Programs

  • Maple
    2*(Pi^3-28*Zeta(3)); evalf(%) ;
  • Mathematica
    RealDigits[PolyGamma[2, 3/4], 10, 105][[1]] (* Vaclav Kotesovec, Aug 27 2024 *)

Formula

psi''(3/4) = 2*(Pi^3-28*zeta(3)).
Showing 1-7 of 7 results.