cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A083918 Number of divisors of n that are congruent to 8 modulo 10.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 2, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 1, 0
Offset: 1

Views

Author

Reinhard Zumkeller, May 08 2003

Keywords

Crossrefs

Programs

Formula

a(n) = A000005(n) - A083910(n) - A083911(n) - A083912(n) - A083913(n) - A083914(n) - A083915(n) - A083916(n) - A083917(n) - A083919(n).
G.f.: Sum_{k>=1} x^(8*k)/(1 - x^(10*k)). - Ilya Gutkovskiy, Sep 11 2019
Sum_{k=1..n} a(k) = n*log(n)/10 + c*n + O(n^(1/3)*log(n)), where c = gamma(8,10) - (1 - gamma)/10 = -0.176036..., gamma(8,10) = -(psi(4/5) + log(10))/10 is a generalized Euler constant, and gamma is Euler's constant (A001620) (Smith and Subbarao, 1981). - Amiram Eldar, Dec 30 2023

A200135 Decimal expansion of the negated value of the digamma function at 1/5.

Original entry on oeis.org

5, 2, 8, 9, 0, 3, 9, 8, 9, 6, 5, 9, 2, 1, 8, 8, 2, 9, 5, 5, 4, 7, 2, 0, 7, 9, 6, 2, 4, 4, 9, 9, 5, 2, 1, 0, 4, 8, 2, 5, 5, 8, 8, 2, 7, 4, 2, 0, 6, 6, 4, 2, 8, 1, 0, 1, 7, 5, 8, 5, 8, 6, 6, 4, 1, 9, 1, 6, 2, 4, 7, 5, 4, 0, 9, 1, 6, 1, 9, 6, 5, 2, 5, 4, 6, 5, 7, 7, 8, 2, 4, 3, 1, 9, 5, 7, 0, 3, 6, 2, 4, 1, 2, 4, 0
Offset: 1

Views

Author

R. J. Mathar, Nov 13 2011

Keywords

Examples

			Psi(1/5) =  -5.289039896592188295547207962...
		

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); -EulerGamma(R) -Pi(R)*Sqrt(1+2/Sqrt(5))/2 -5*Log(5)/4 -Sqrt(5)/4*Log((3+Sqrt(5)/2) ); // G. C. Greubel, Sep 03 2018
  • Maple
    -gamma-Pi*sqrt(1+2/sqrt(5))/2-5*log(5)/4-sqrt(5)/4*log((3+sqrt(5)/2) ); evalf(%) ;
  • Mathematica
    RealDigits[-PolyGamma[1/5], 10, 105] // First (* Jean-François Alcover, Feb 11 2013 *)
  • PARI
    -psi(1/5) \\ Charles R Greathouse IV, Jul 19 2013
    

Formula

Psi(1/5) = -gamma - Pi*sqrt(1 + 2/sqrt(5))/2 - 5*log(5)/4 -sqrt(5)*log((3 + sqrt(5))/2)/4 where gamma = A001620, sqrt(1 + 2/sqrt(5)) = A019952, (3 + sqrt(5))/2 = A104457.

Extensions

More terms from Jean-François Alcover, Feb 11 2013

A200136 Decimal expansion of the negated value of the digamma function at 2/5.

Original entry on oeis.org

2, 5, 6, 1, 3, 8, 4, 5, 4, 4, 5, 8, 5, 1, 1, 6, 1, 4, 5, 7, 3, 0, 6, 7, 5, 4, 8, 2, 0, 4, 7, 5, 2, 8, 4, 5, 5, 8, 2, 6, 3, 6, 1, 0, 9, 6, 5, 1, 0, 8, 1, 0, 1, 5, 7, 2, 3, 3, 9, 5, 3, 6, 7, 5, 2, 1, 2, 6, 1, 1, 0, 4, 2, 9, 3, 0, 5, 4, 1, 3, 8, 3, 9, 7
Offset: 1

Views

Author

R. J. Mathar, Nov 13 2011

Keywords

Examples

			Psi(2/5) = -2.5613845445851161457306754820475...
		

Crossrefs

Programs

  • Maple
    -gamma-Pi*sqrt(1-2/sqrt(5))/2-5*log(5)/4+sqrt(5)*log((3+sqrt(5))/2)/4 ; evalf(%) ;
  • Mathematica
    RealDigits[ PolyGamma[2/5], 10, 84] // First (* Jean-François Alcover, Feb 21 2013 *)
  • PARI
    -psi(2/5) \\ Charles R Greathouse IV, Jul 19 2013

Formula

Psi(2/5) = -gamma -Pi*sqrt(1-2/sqrt 5)/2 -5*log(5)/4 +sqrt(5)*log((3+sqrt 5)/2)/4.

A200137 Decimal expansion of the negated digamma function at 3/5.

Original entry on oeis.org

1, 5, 4, 0, 6, 1, 9, 2, 1, 3, 8, 9, 3, 1, 9, 0, 4, 1, 4, 7, 6, 0, 6, 6, 3, 9, 4, 8, 8, 0, 6, 2, 3, 1, 9, 4, 1, 5, 1, 0, 5, 3, 4, 2, 5, 4, 6, 8, 9, 6, 0, 7, 2, 0, 8, 2, 6, 6, 6, 8, 5, 2, 6, 3, 2, 6, 1, 1, 6, 8, 8, 4, 1, 2, 4, 1, 1, 0, 2, 4, 6, 6, 0, 7, 3, 3, 4, 2, 4, 6, 7, 7, 1, 9, 7, 7, 8, 8, 2, 0, 1, 0, 0, 5, 7
Offset: 1

Views

Author

R. J. Mathar, Nov 13 2011

Keywords

Examples

			Psi(3/5) = -1.540619213893190414760663948806231941510...
		

Crossrefs

Programs

  • Maple
    -gamma+Pi*sqrt(1-2/sqrt(5))/2-5*log(5)/4+sqrt(5)/4*log(3/2+sqrt(5)/2) ; evalf(%) ;
  • Mathematica
    RealDigits[-PolyGamma[3/5], 10, 105] // First (* Jean-François Alcover, Feb 11 2013 *)
  • PARI
    -psi(3/5) \\ Charles R Greathouse IV, Jul 19 2013

Formula

Psi(3/5) = -gamma +Pi*sqrt( 1-2/sqrt 5)/2 -5*log(5)/4 +sqrt(5)*log((3+sqrt 5)/2)/4.

Extensions

More terms from Jean-François Alcover, Feb 11 2013

A001545 a(n) = (5*n+1)*(5*n+4).

Original entry on oeis.org

4, 54, 154, 304, 504, 754, 1054, 1404, 1804, 2254, 2754, 3304, 3904, 4554, 5254, 6004, 6804, 7654, 8554, 9504, 10504, 11554, 12654, 13804, 15004, 16254, 17554, 18904, 20304, 21754, 23254, 24804, 26404, 28054, 29754, 31504, 33304, 35154, 37054, 39004, 41004, 43054
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(5n+1)(5n+4),{n,0,60}] (* or *) LinearRecurrence[{3,-3,1},{4,54,154},60] (* Harvey P. Dale, Mar 17 2019 *)
  • PARI
    a(n)=(5*n+1)*(5*n+4) \\ Charles R Greathouse IV, Jun 17 2017

Formula

a(n) = 50*A000217(n) + 4.
a(n) = 50*n + a(n-1) with a(0)=4. - Vincenzo Librandi, Jan 20 2011
From Amiram Eldar, Jan 23 2022: (Start)
Sum_{n>=0} 1/a(n) = sqrt(1 + 2/sqrt(5))*Pi/15 = 0.2882687....
Sum_{n>=0} (-1)^n/a(n) = 2*log(phi)/(3*sqrt(5)) + 2*log(2)/15, where phi is the golden ratio (A001622).
Product_{n>=0} (1 - 1/a(n)) = sqrt(2 + 2/sqrt(5)) * cos(sqrt(13)*Pi/10).
Product_{n>=0} (1 + 1/a(n)) = sqrt(2 + 2/sqrt(5)) * cos(Pi/(2*sqrt(5))).
Product_{n>=0} (1 + 2/a(n)) = phi. (End)
G.f.: 2*(2+21*x+2*x^2)/(1-x)^3. - R. J. Mathar, May 30 2022
Sum_{n>=0} 1/a(n) = (Psi(4/5) - Psi(1/5))/15. See A200135, A200138. - R. J. Mathar, May 30 2022
From Elmo R. Oliveira, Oct 23 2024: (Start)
E.g.f.: exp(x)*(4 + 25*x*(2 + x)).
a(n) = A016861(n)*A016897(n).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)
Showing 1-5 of 5 results.