A075135
Numerator of the generalized harmonic number H(n,3,1) described below.
Original entry on oeis.org
1, 5, 39, 209, 2857, 11883, 233057, 2632787, 13468239, 13739939, 433545709, 7488194853, 281072414761, 284780929571, 12393920563953, 288249495707519, 2038704876507433, 2058454144222533, 2077126179153173, 60750140156034617
Offset: 1
a(3)=39 because 1 + 1/4 + 1/7 = 39/28.
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 263, 269, 272, 297, 302, 356.
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 4th ed., Oxford Univ. Press, 1971, page 88.
-
a=3; b=1; maxN=20; s=0; Numerator[Table[s+=1/(a n + b), {n, 0, maxN-1}]]
Accumulate[1/Range[1,60,3]]//Numerator (* Harvey P. Dale, Dec 30 2019 *)
A074637
Numerator of 4 * H(n,4,3), a generalized harmonic number.
Original entry on oeis.org
4, 40, 524, 976, 20084, 491192, 13935164, 450160544, 93250876, 1249813672, 55206526972, 2657681947952, 46167204272716, 235410309457592, 14140794103168588, 14376406243883968, 978062783205294796
Offset: 1
-
Table[ Numerator[ Sum[1/i, {i, 3/4, n}]], {n, 1, 20}]
Better description from
T. D. Noe, Sep 04 2002
A097329
Least common multiple of {3,7,11,...,4n+3}.
Original entry on oeis.org
3, 21, 231, 1155, 21945, 504735, 4542615, 140821065, 140821065, 1830673845, 78718975335, 3699791840745, 62896461292665, 62896461292665, 3710891216267235, 3710891216267235, 248629711489904745
Offset: 0
Cf.
A004767 (4n+3),
A074638 (denominator of 1/3+1/7+/11+...+1/(4n+3)).
-
k:=67; [Lcm([h: h in [3..j by 4]]): j in [3..k by 4]]; // Bruno Berselli, May 03 2011
-
Table[LCM@@Range[3, 4n+3, 4], {n, 0, 19}]
A352395
Denominator of Sum_{k=0..n} (-1)^k / (2*k+1).
Original entry on oeis.org
1, 3, 15, 105, 315, 3465, 45045, 45045, 765765, 14549535, 14549535, 334639305, 1673196525, 5019589575, 145568097675, 4512611027925, 4512611027925, 4512611027925, 166966608033225, 166966608033225, 6845630929362225, 294362129962575675, 294362129962575675, 13835020108241056725
Offset: 0
-
Denominator @ Accumulate @ Table[(-1)^k/(2*k + 1), {k, 0, 25}] (* Amiram Eldar, Apr 08 2022 *)
-
a(n) = denominator(sum(k=0, n, (-1)^k / (2*k+1))); \\ Michel Marcus, Apr 07 2022
-
from fractions import Fraction
def A352395(n): return sum(Fraction(-1 if k % 2 else 1,2*k+1) for k in range(n+1)).denominator # Chai Wah Wu, May 18 2022
Showing 1-4 of 4 results.
Comments