A075135
Numerator of the generalized harmonic number H(n,3,1) described below.
Original entry on oeis.org
1, 5, 39, 209, 2857, 11883, 233057, 2632787, 13468239, 13739939, 433545709, 7488194853, 281072414761, 284780929571, 12393920563953, 288249495707519, 2038704876507433, 2058454144222533, 2077126179153173, 60750140156034617
Offset: 1
a(3)=39 because 1 + 1/4 + 1/7 = 39/28.
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 263, 269, 272, 297, 302, 356.
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 4th ed., Oxford Univ. Press, 1971, page 88.
-
a=3; b=1; maxN=20; s=0; Numerator[Table[s+=1/(a n + b), {n, 0, maxN-1}]]
Accumulate[1/Range[1,60,3]]//Numerator (* Harvey P. Dale, Dec 30 2019 *)
A074638
Denominator of 1/3 + 1/7 + 1/11 + ... + 1/(4n-1).
Original entry on oeis.org
3, 21, 231, 385, 7315, 168245, 4542615, 140821065, 28164213, 366134769, 15743795067, 739958368149, 12579292258533, 62896461292665, 3710891216267235, 3710891216267235, 248629711489904745, 17652709515783236895, 88263547578916184475, 6972820258734378573525
Offset: 1
The numerators times 4 are
A074637.
-
Table[ Denominator[ Sum[1/i, {i, 3/4, n}]], {n, 1, 20}]
-
a(n) = denominator(sum(i=1, n, 1/(4*i-1))); \\ Michel Marcus, Mar 21 2021
-
from fractions import Fraction
def a(n): return sum(Fraction(1, 4*i-1) for i in range(1, n+1)).denominator
print([a(n) for n in range(1, 21)]) # Michael S. Branicky, Mar 21 2021
A352395
Denominator of Sum_{k=0..n} (-1)^k / (2*k+1).
Original entry on oeis.org
1, 3, 15, 105, 315, 3465, 45045, 45045, 765765, 14549535, 14549535, 334639305, 1673196525, 5019589575, 145568097675, 4512611027925, 4512611027925, 4512611027925, 166966608033225, 166966608033225, 6845630929362225, 294362129962575675, 294362129962575675, 13835020108241056725
Offset: 0
-
Denominator @ Accumulate @ Table[(-1)^k/(2*k + 1), {k, 0, 25}] (* Amiram Eldar, Apr 08 2022 *)
-
a(n) = denominator(sum(k=0, n, (-1)^k / (2*k+1))); \\ Michel Marcus, Apr 07 2022
-
from fractions import Fraction
def A352395(n): return sum(Fraction(-1 if k % 2 else 1,2*k+1) for k in range(n+1)).denominator # Chai Wah Wu, May 18 2022
Showing 1-3 of 3 results.
Comments