cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A001067 Numerator of Bernoulli(2*n)/(2*n).

Original entry on oeis.org

1, -1, 1, -1, 1, -691, 1, -3617, 43867, -174611, 77683, -236364091, 657931, -3392780147, 1723168255201, -7709321041217, 151628697551, -26315271553053477373, 154210205991661, -261082718496449122051, 1520097643918070802691, -2530297234481911294093
Offset: 1

Views

Author

N. J. A. Sloane, Richard E. Borcherds (reb(AT)math.berkeley.edu)

Keywords

Comments

It was incorrectly claimed that a(n) is "also numerator of "modified Bernoulli number" b(2n) = Bernoulli(2*n)/(2*n*n!)"; actually, the numerators of these fractions and the numerators of "modified Bernoulli numbers" (see A057868 for details) differ from each other and from this sequence. - Andrey Zabolotskiy, Dec 03 2022
Ramanujan incorrectly conjectured that the sequence contains only primes (and 1). - Jud McCranie. See A112548, A119766.
a(n) = A046968(n) if n < 574; a(574) = 37 * A046968(574). - Michael Somos, Feb 01 2004
Absolute values give denominators of constant terms of Fourier series of meromorphic modular forms E_k/Delta, where E_k is the normalized k th Eisenstein series [cf. Gunning or Serre references] and Delta is the normalized unique weight-twelve cusp form for the full modular group (the generating function of Ramanujan's tau function.) - Barry Brent (barrybrent(AT)iphouse.com), Jun 01 2009
|a(n)| is a product of powers of irregular primes (A000928), with the exception of n = 1,2,3,4,5,7. - Peter Luschny, Jul 28 2009
Conjecture: If there is a prime p such that 2*n+1 < p and p divides a(n), then p^2 does not divide a(n). This conjecture is true for p < 12 million. - Seiichi Manyama, Jan 21 2017

Examples

			The sequence Bernoulli(2*n)/(2*n) (n >= 1) begins 1/12, -1/120, 1/252, -1/240, 1/132, -691/32760, 1/12, -3617/8160, ...
The sequence of modified Bernoulli numbers begins 1/48, -1/5760, 1/362880, -1/19353600, 1/958003200, -691/31384184832000, ...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 259, (6.3.18) and (6.3.19); also p. 810.
  • L. V. Ahlfors, Complex Analysis, McGraw-Hill, 1979, p. 205
  • R. C. Gunning, Lectures on Modular Forms. Princeton Univ. Press, Princeton, NJ, 1962, p. 53.
  • R. Kanigel, The Man Who Knew Infinity, pp. 91-92.
  • J. W. Milnor and J. D. Stasheff, Characteristic Classes, Princeton, 1974, p. 285.
  • J.-P. Serre, A Course in Arithmetic, Springer-Verlag, 1973, p. 93.

Crossrefs

Similar to but different from A046968. See A090495, A090496.
Denominators given by A006953.

Programs

  • GAP
    List([1..25], n-> NumeratorRat(Bernoulli(2*n)/(2*n)));  # G. C. Greubel, Sep 19 2019
  • Magma
    [Numerator(Bernoulli(2*n)/(2*n)):n in [1..40]]; // Vincenzo Librandi, Sep 17 2015
    
  • Maple
    A001067_list := proc(n) 1/(1-1/exp(z)); series(%,z,2*n+4);
    seq(numer((2*i+1)!*coeff(%,z,2*i+1)),i=0..n) end:
    A001067_list(21); # Peter Luschny, Jul 12 2012
  • Mathematica
    Table[ Numerator[ BernoulliB[2n]/(2n)], {n, 1, 22}] (* Robert G. Wilson v, Feb 03 2004 *)
  • PARI
    {a(n) = if( n<1, 0, numerator( bernfrac(2*n) / (2*n)))}; /* Michael Somos, Feb 01 2004 */
    
  • Sage
    @CachedFunction
    def S(n, k) :
        if k == 0 :
            if n == 0 : return 1
            else: return 0
        return S(n, k-1) + S(n-1, n-k)
    def BernoulliDivN(n) :
        if n == 0 : return 1
        return (-1)^n*S(2*n-1,2*n-1)/(4^n-16^n)
    [BernoulliDivN(n).numerator() for n in (1..22)]
    # Peter Luschny, Jul 08 2012
    
  • Sage
    [numerator(bernoulli(2*n)/(2*n)) for n in (1..25)] # G. C. Greubel, Sep 19 2019
    

Formula

Zeta(1-2*n) = - Bernoulli(2*n)/(2*n).
G.f.: numerators of coefficients of z^(2*n) in z/(exp(z)-1). - Benoit Cloitre, Jun 02 2003
For 2 <= k <= 1000 and k != 7, the 2-order of the full constant term of E_k/Delta = 3 + ord_2(k - 7). - Barry Brent (barrybrent(AT)iphouse.com), Jun 01 2009
G.f. for Bernoulli(2*n)/(2*n) = a(n)/A006953(n): (-1)^n/((2*Pi)^(2*n)*(2*n))*integral(log(1-1/t)^(2*n) dt,t=0,1). - Gerry Martens, May 18 2011
E.g.f.: a(n) = numerator((2*n+1)!*[x^(2*n+1)](1/(1-1/exp(x)))). - Peter Luschny, Jul 12 2012
|a(n)| = numerator of Integral_{r=0..1} HurwitzZeta(1-n, r)^2 dr. More general: |Bernoulli(2*n)| = binomial(2*n,n)*n^2*I(n) for n >= 1 where I(n) denotes the integral. - Peter Luschny, May 24 2015

A112548 Numbers k such that the numerator of Bernoulli(k)/k is (apart from sign) prime.

Original entry on oeis.org

12, 16, 18, 26, 34, 36, 38, 42, 74, 114, 118, 396, 674, 1870, 4306, 22808
Offset: 1

Views

Author

T. D. Noe, Sep 28 2005

Keywords

Comments

In 1911 Ramanujan believed that the numerator of Bernoulli(k)/k for k even was (apart from sign) always either 1 or a prime. This is false.
Equivalently, k such that the numerator of zeta(1-k) is prime. No other k < 23000. Kellner's Calcbn program was used to generate the numerators of Bernoulli(k)/k for k > 5000. Mathematica and PFGW were used to test for probable primes. David Broadhurst found n=4306, which yields a 10342-digit probable prime. For n<4306, the primes have been proved. Bouk de Water proved the prime for n=1870. All these primes are necessarily irregular.
The number generated by k=4306 was recently proved prime. See Chris Caldwell's link for more details. - T. D. Noe, Apr 06 2009
a(17) > 50000. - Robert Price, Oct 20 2013
a(17) > 74708. - Simon Plouffe, Mar 06 2022
a(17) > 270000. - Serge Batalov, Jun 26 2025

References

  • S. Ramanujan, Some properties of Bernoulli's numbers, J. Indian Math. Soc., 3 (1911), 219-234.

Crossrefs

Cf. A001067 (numerator of Bernoulli(2n)/(2n)).
Cf. A033563 (primes in A001067).
Cf. A092132 (n such that the numerator of Bernoulli(n) is prime).
Cf. A112741 (primes p such that zeta(1-2p)/zeta(-1) is prime).
Cf. A119766.

Programs

  • Maple
    A112548 := proc(nmax) local numr; for n from 2 to nmax by 2 do numr := abs(numer(bernoulli(n)/n)) ; if isprime(numr) then print(n) ; fi ; od ; end : A112548(3000) ; # R. J. Mathar, Jun 21 2006
  • Mathematica
    Select[Range[2, 5000, 2], PrimeQ[Numerator[BernoulliB[ # ]/# ]]&]

A281331 Smallest prime factor of |A001067(n)|, or 1 if |A001067(n)| = 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 691, 1, 3617, 43867, 283, 131, 103, 657931, 9349, 1721, 37, 151628697551, 26315271553053477373, 154210205991661, 137616929, 1520097643918070802691, 59, 383799511, 653, 417202699, 577, 39409, 113161, 67, 2003, 157, 1226592271, 839, 37, 688531, 3112655297839
Offset: 1

Views

Author

Seiichi Manyama, Jan 20 2017

Keywords

Examples

			|A001067(10)| = 174611 = 283*617. So a(10) = 283.
|A001067(16)| = 7709321041217 = 37*683*305065927. So a(16) = 37.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := FactorInteger[Abs[Numerator[BernoulliB[2*n] / (2*n)]]][[1, 1]]; Table[a[n], {n, 1, 36}] (* Indranil Ghosh, Mar 12 2017 *)
  • PARI
    a(n) = my(num = abs(numerator(bernfrac(2*n)/(2*n)))); if (num==1, 1, factor(num)[1,1]); \\ Michel Marcus, Jan 21 2017

Formula

a(n) = A020639(|A001067(n)|).
If n = A112548(m)/2, a(n) = |A001067(n)|.
a(18*m-2) = 37 for m > 0.

Extensions

More terms from Michel Marcus, Jan 21 2017

A281332 Greatest prime factor of |A001067(n)|, or 1 if |A001067(n)| = 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 691, 1, 3617, 43867, 617, 593, 2294797, 657931, 362903, 1001259881, 305065927, 151628697551, 26315271553053477373, 154210205991661, 1897170067619, 1520097643918070802691, 1798482437, 67568238839737, 153289748932447906241, 47464429777438199
Offset: 1

Views

Author

Seiichi Manyama, Jan 20 2017

Keywords

Examples

			|A001067(10)| = 174611 = 283*617. So a(10) = 617.
|A001067(16)| = 7709321041217 = 37*683*305065927. So a(16) = 305065927.
		

Crossrefs

Programs

  • Mathematica
    Table[FactorInteger[Abs@ Numerator[BernoulliB[2 n]/(2 n)]][[-1, 1]], {n, 25}] (* Michael De Vlieger, Jan 21 2017 *)
  • PARI
    a(n) = if(abs(numerator(bernfrac(2*n) / (2*n))) == 1, 1, vecmax(factor(abs(numerator(bernfrac(2*n) / (2*n))))[,1]));
    for(n=1, 25, print1(a(n), ", ")) \\ Indranil Ghosh, Mar 11 2017

Formula

a(n) = A006530(|A001067(n)|).
If n = A112548(m)/2, a(n) = |A001067(n)|.

Extensions

a(20)-a(25) from Michael De Vlieger, Jan 21 2017
Showing 1-4 of 4 results.