Original entry on oeis.org
1, 24, 240, 504, 65520, 131040, 171864, 138181680, 6814407600, 20174525280, 45185409360, 558781423200, 685933859520, 2601256998740400, 4578654981700800, 15571124394460034400, 375159113055066740400, 124708934978441512498800, 127589793288205521873600, 8644416283014847832296800, 29217965124687229769336640
Offset: 1
-
d[0] = 1; d[n_] := Denominator[BernoulliB[2*n]/(4*n)]; Union @ FoldList[Max, Array[d, 500, 0]] (* Amiram Eldar, May 03 2021 *)
-
s=0; for(k=0, 1e3, t=if(k==0, 1, denominator(bernfrac(2*k)/(-4*k))); if(t>s, s=t; print1(s", ")))
A060334
The sequence A006863 (shifted by one) seems to be counting the periodic points for a map. If so, then this is the sequence of the numbers of orbits of length n.
Original entry on oeis.org
24, 108, 160, 60, 48, 10800, 0, 1980, 3136, 1272, 48, 5440, 0, 480, 11408, 1020, 0, 7671552, 0, 53448, 7200, 216, 48, 179520, 0, 480, 2128, 240, 48, 227138600, 0
Offset: 1
a(3) = 160 because the 4th term of A006863 is 504 and the 2nd term is 24, so there should be (504-24)/3 = 160 orbits of length 3.
A001067
Numerator of Bernoulli(2*n)/(2*n).
Original entry on oeis.org
1, -1, 1, -1, 1, -691, 1, -3617, 43867, -174611, 77683, -236364091, 657931, -3392780147, 1723168255201, -7709321041217, 151628697551, -26315271553053477373, 154210205991661, -261082718496449122051, 1520097643918070802691, -2530297234481911294093
Offset: 1
The sequence Bernoulli(2*n)/(2*n) (n >= 1) begins 1/12, -1/120, 1/252, -1/240, 1/132, -691/32760, 1/12, -3617/8160, ...
The sequence of modified Bernoulli numbers begins 1/48, -1/5760, 1/362880, -1/19353600, 1/958003200, -691/31384184832000, ...
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 259, (6.3.18) and (6.3.19); also p. 810.
- L. V. Ahlfors, Complex Analysis, McGraw-Hill, 1979, p. 205
- R. C. Gunning, Lectures on Modular Forms. Princeton Univ. Press, Princeton, NJ, 1962, p. 53.
- R. Kanigel, The Man Who Knew Infinity, pp. 91-92.
- J. W. Milnor and J. D. Stasheff, Characteristic Classes, Princeton, 1974, p. 285.
- J.-P. Serre, A Course in Arithmetic, Springer-Verlag, 1973, p. 93.
- Seiichi Manyama, Table of n, a(n) for n = 1..314 (first 100 terms from T. D. Noe)
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math.Series 55, Tenth Printing, 1972, p. 259, (6.3.18) and (6.3.19).
- D. Bar-Natan, T. T. Q. Le and D. P. Thurston, Two applications of elementary knot theory to Lie algebras and Vassiliev invariants, arXiv:math/0204311 [math.QA], 2002-2003; Geometry and Topology 7-1 (2003) 1-31.
- G. Everest, A. J. van der Poorten, Y. Puri and T. Ward, Integer Sequences and Periodic Points, Journal of Integer Sequences, Vol. 5 (2002), Article 02.2.3.
- E. Z. Goren, Tables of values of Riemann zeta functions
- Milan Janjic, Hessenberg Matrices and Integer Sequences, J. Int. Seq. 13 (2010) # 10.7.8, section 3.
- J. Sondow and E. W. Weisstein, MathWorld: Riemann Zeta Function
- Eric Weisstein's World of Mathematics, Eisenstein Series.
- Eric Weisstein's World of Mathematics, Bernoulli Number.
- Wikipedia, Kummer-Vandiver conjecture
- Index entries for sequences related to Bernoulli numbers
-
List([1..25], n-> NumeratorRat(Bernoulli(2*n)/(2*n))); # G. C. Greubel, Sep 19 2019
-
[Numerator(Bernoulli(2*n)/(2*n)):n in [1..40]]; // Vincenzo Librandi, Sep 17 2015
-
A001067_list := proc(n) 1/(1-1/exp(z)); series(%,z,2*n+4);
seq(numer((2*i+1)!*coeff(%,z,2*i+1)),i=0..n) end:
A001067_list(21); # Peter Luschny, Jul 12 2012
-
Table[ Numerator[ BernoulliB[2n]/(2n)], {n, 1, 22}] (* Robert G. Wilson v, Feb 03 2004 *)
-
{a(n) = if( n<1, 0, numerator( bernfrac(2*n) / (2*n)))}; /* Michael Somos, Feb 01 2004 */
-
@CachedFunction
def S(n, k) :
if k == 0 :
if n == 0 : return 1
else: return 0
return S(n, k-1) + S(n-1, n-k)
def BernoulliDivN(n) :
if n == 0 : return 1
return (-1)^n*S(2*n-1,2*n-1)/(4^n-16^n)
[BernoulliDivN(n).numerator() for n in (1..22)]
# Peter Luschny, Jul 08 2012
-
[numerator(bernoulli(2*n)/(2*n)) for n in (1..25)] # G. C. Greubel, Sep 19 2019
A309906
a(n) is the smallest number of divisors of p^n - 1 that may possibly occur for arbitrarily large primes p.
Original entry on oeis.org
4, 32, 8, 160, 8, 384, 8, 384, 16, 256, 8, 7680, 8, 128, 32, 1792, 8, 4096, 8, 3840, 32, 256, 8, 36864, 16, 128, 32, 2560, 8, 24576, 8, 4096, 32, 128, 32, 327680, 8, 128, 32, 36864, 8, 18432, 8, 2560, 128, 256, 8, 344064, 16, 1024, 32, 2560, 8, 20480, 32
Offset: 1
a(1) = 4: The only primes p for which p-1 has fewer than 4 divisors are 2, 3, and 5; for all primes p > 5, p-1 has at least 4 divisors, and the terms in A005385 (Safe primes) except 5 are primes p such that p-1 has exactly 4 divisors.
a(2) = 32: p^2 - 1 = (p-1)*(p+1) has fewer than 32 divisors only for p = 2, 3, 5, 7, 11, 13, 17, 19, 23, 31, 37, 47, and 73; for all primes p such that the product of the 3-smooth parts of p-1 and p+1 is 24 and p-1 and p+1 each have one prime factor > 3, p^2 - 1 has exactly 32 divisors (see A341658).
a(4) = 160: primes p such that p^4 - 1 has exactly 160 divisors are plentiful (see A341662), but only p = 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 59, 61, 71, 79, and 101 yield tau(p^4 - 1) < 160. Of these, p = 13, 29, 59, and 61 all give tau(p^4 - 1) = 80; 37 and 101 both give 120 divisors; and 41 and 71 both give 144. For each of the ten remaining primes (p = 2, 3, 5, 7, 11, 17, 19, 23, 31, 79), the value of tau(p^4 - 1) is unique, so each of those ten values of p^4 - 1 is a term in A161460.
-
f(n) = {if (n%2, 2, res = 1; forprime(p=2, n+1, if (!(n % (p-1)), t = valuation(n, p); if (p==2, if (t, res *= p^(t+2)), res *= p^(t+1)); ); ); res; ); } \\ A079612
a(n) = numdiv(f(n))*2^numdiv(n); \\ Michel Marcus, Aug 22 2019
A006953
a(n) = denominator of Bernoulli(2n)/(2n).
Original entry on oeis.org
12, 120, 252, 240, 132, 32760, 12, 8160, 14364, 6600, 276, 65520, 12, 3480, 85932, 16320, 12, 69090840, 12, 541200, 75852, 2760, 564, 2227680, 132, 6360, 43092, 6960, 708, 3407203800, 12, 32640, 388332, 120, 9372, 10087262640
Offset: 1
Sequence Bernoulli(2n)/(2n) (n >= 1) begins 1/12, -1/120, 1/252, -1/240, 1/132, -691/32760, 1/12, -3617/8160, ... .
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 259, (6.3.18) and (6.3.19); also p. 810.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n=1..1000
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math.Series 55, Tenth Printing, 1972, p. 259, (6.3.18) and (6.3.19).
- Iaroslav V. Blagouchine, Expansions of generalized Euler's constants into the series of polynomials in 1/pi^2 and into the formal enveloping series with rational coefficients only, Journal of Number Theory (Elsevier), vol. 158, pp. 365-396, 2016. arXiv version, arXiv:1501.00740 [math.NT], 2015.
- R. D. Carmichael, Notes on the simplex theory of numbers, Bull. Amer. Math. Soc. 15 (1909), 217-223.
- G. Everest, A. J. van der Poorten, Y. Puri and T. Ward, Integer Sequences and Periodic Points, Journal of Integer Sequences, Vol. 5 (2002), Article 02.2.3
- E. Z. Goren, Tables of values of Riemann zeta functions
- A. Iványi, Leader election in synchronous networks, Acta Univ. Sapientiae, Mathematica, 5, 2 (2013) 54-82.
- Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
- J. Sondow and E. W. Weisstein, MathWorld: Riemann Zeta Function
- J. Sondow and E. W. Weisstein, MathWorld: Harmonic Number
- Index entries for sequences related to Bernoulli numbers.
-
List([1..40], n-> DenominatorRat(Bernoulli(2*n)/(2*n)) ); # G. C. Greubel, Sep 19 2019
-
[Denominator(Bernoulli(2*n)/(2*n)):n in [1..40]]; // Vincenzo Librandi, Sep 17 2015
-
A006953_list := proc(n) 1/(1-1/exp(z)); series(%,z,2*n+4);
seq(denom((-1)^i*(2*i+1)!*coeff(%,z,2*i+1)),i=0..n) end;
A006953_list(35); # Peter Luschny, Jul 12 2012
-
Table[Denominator[BernoulliB[2n]/(2n)],{n,40}] (* Harvey P. Dale, Jan 12 2022 *)
-
a(n) = denominator(bernfrac(2*n)/(2*n)); \\ Michel Marcus, Apr 21 2016
-
[denominator(bernoulli(2*n)/(2*n)) for n in (1..40)] # G. C. Greubel, Sep 19 2019
A069091
Jordan function J_6(n).
Original entry on oeis.org
1, 63, 728, 4032, 15624, 45864, 117648, 258048, 530712, 984312, 1771560, 2935296, 4826808, 7411824, 11374272, 16515072, 24137568, 33434856, 47045880, 62995968, 85647744, 111608280, 148035888, 187858944, 244125000, 304088904, 386889048
Offset: 1
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 199, #3.
-
with(numtheory): seq(add(d^6 * mobius(n/d), d in divisors(n)), n = 1..100); # Peter Bala, Jan 13 2024
-
JordanTotient[n_,k_:1]:=DivisorSum[n,#^k*MoebiusMu[n/# ]&]/;(n>0)&&IntegerQ[n]
A069091[n_IntegerQ]:=JordanTotient[n,6]; (* Enrique Pérez Herrero, Sep 14 2010 *)
f[p_, e_] := p^(6*e) - p^(6*(e-1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 12 2020 *)
-
for(n=1,100,print1(sumdiv(n,d,d^6*moebius(n/d)),","))
A069095
Jordan function J_10(n).
Original entry on oeis.org
1, 1023, 59048, 1047552, 9765624, 60406104, 282475248, 1072693248, 3486725352, 9990233352, 25937424600, 61855850496, 137858491848, 288972178704, 576640565952, 1098437885952, 2015993900448, 3566920035096, 6131066257800
Offset: 1
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 199, #3.
-
f:= n -> n^10*mul(1-1/p^10, p=numtheory:-factorset(n)):
map(f, [$1..30]); # Robert Israel, Jan 09 2015
-
JordanJ[n_, k_] := DivisorSum[n, #^k*MoebiusMu[n/#] &]; f[n_] := JordanJ[n, 10]; Array[f, 21]
f[p_, e_] := p^(10*e) - p^(10*(e-1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 12 2020 *)
-
a(n) = sumdiv(n,d,d^10*moebius(n/d));
A079612
Largest number m such that a^n == 1 (mod m) whenever a is coprime to m.
Original entry on oeis.org
2, 24, 2, 240, 2, 504, 2, 480, 2, 264, 2, 65520, 2, 24, 2, 16320, 2, 28728, 2, 13200, 2, 552, 2, 131040, 2, 24, 2, 6960, 2, 171864, 2, 32640, 2, 24, 2, 138181680, 2, 24, 2, 1082400, 2, 151704, 2, 5520, 2, 1128, 2, 4455360, 2, 264, 2, 12720, 2, 86184, 2, 13920
Offset: 1
A143407
Largest number k such that the reduced totient function psi(k) = A002174(n).
Original entry on oeis.org
2, 24, 240, 504, 480, 264, 65520, 16320, 28728, 13200, 552, 131040, 6960, 171864, 32640, 138181680, 1082400, 151704, 5520, 1128, 4455360, 12720, 86184, 13920, 1416, 6814407600, 65280, 776664, 18744, 20174525280, 39816, 36801600, 1992
Offset: 1
A069093
Jordan function J_8(n).
Original entry on oeis.org
1, 255, 6560, 65280, 390624, 1672800, 5764800, 16711680, 43040160, 99609120, 214358880, 428236800, 815730720, 1470024000, 2562493440, 4278190080, 6975757440, 10975240800, 16983563040, 25499934720, 37817088000
Offset: 1
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 199, #3.
-
with(numtheory): seq(add(d^8 * mobius(n/d), d in divisors(n)), n = 1..100); # Peter Bala, Jan 13 2024
-
JordanJ[n_, k_] := DivisorSum[n, #^k*MoebiusMu[n/#] &]; f[n_] := JordanJ[n, 8]; Array[f, 25]
f[p_, e_] := p^(8*e) - p^(8*(e-1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 12 2020 *)
-
for(n=1,100,print1(sumdiv(n,d,d^8*moebius(n/d)),","))
Showing 1-10 of 16 results.
Next
Comments