cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A000542 Sum of 8th powers: 1^8 + 2^8 + ... + n^8.

Original entry on oeis.org

0, 1, 257, 6818, 72354, 462979, 2142595, 7907396, 24684612, 67731333, 167731333, 382090214, 812071910, 1627802631, 3103591687, 5666482312, 9961449608, 16937207049, 27957167625, 44940730666, 70540730666, 108363590027, 163239463563, 241550448844
Offset: 0

Views

Author

Keywords

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 815.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 155.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row 8 of array A103438.
Cf. A069093.

Programs

  • Maple
    a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=a[n-1]+n^8 od: seq(a[n], n=0..23); # Zerinvary Lajos, Feb 22 2008
  • Mathematica
    lst={};s=0;Do[s=s+n^8;AppendTo[lst, s], {n, 10^2}];lst..or..Table[Sum[k^8, {k, 1, n}], {n, 0, 100}] (* Vladimir Joseph Stephan Orlovsky, Aug 14 2008 *)
    s = 0; lst = {s}; Do[s += n^8; AppendTo[lst, s], {n, 1, 30, 1}]; lst (* Zerinvary Lajos, Jul 12 2009 *)
    Accumulate[Range[0,30]^8] (* Harvey P. Dale, Jun 17 2015 *)
  • PARI
    a(n)=n*(n+1)*(2*n+1)*(5*n^6+15*n^5+5*n^4-15*n^3-n^2+9*n-3)/90 \\ Charles R Greathouse IV, Sep 28 2015
  • Python
    A000542_list, m = [0], [40320, -141120, 191520, -126000, 40824, -5796, 254, -1, 0, 0]
    for _ in range(24):
        for i in range(9):
            m[i+1] += m[i]
        A000542_list.append(m[-1])
    print(A000542_list) # Chai Wah Wu, Nov 05 2014
    
  • Sage
    [bernoulli_polynomial(n,9)/9 for n in range(1, 25)] # Zerinvary Lajos, May 17 2009
    

Formula

a(n) = n*(n+1)*(2*n+1)*(5*n^6 + 15*n^5 + 5*n^4 - 15*n^3 - n^2 + 9*n - 3)/90.
a(n) = n*A000541(n) - Sum_{i=0..n-1} A000541(i). - Bruno Berselli, Apr 26 2010
G.f.: x*(x+1)*(x^6 + 246*x^5 + 4047*x^4 + 11572*x^3 + 4047*x^2 + 246*x + 1)/(x-1)^10. - Colin Barker, May 27 2012
a(n) = 9*a(n-1) - 36* a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) + 40320. - Ant King, Sep 24 2013
a(n) = -Sum_{j=1..8} j*Stirling1(n+1,n+1-j)*Stirling2(n+8-j,n). - Mircea Merca, Jan 25 2014
a(n) = Sum_{i = 1..n} J_8(i)*floor(n/i), where J_8 is A069093. - Ridouane Oudra, Jul 17 2025

A065960 a(n) = n^4*Product_{distinct primes p dividing n} (1+1/p^4).

Original entry on oeis.org

1, 17, 82, 272, 626, 1394, 2402, 4352, 6642, 10642, 14642, 22304, 28562, 40834, 51332, 69632, 83522, 112914, 130322, 170272, 196964, 248914, 279842, 356864, 391250, 485554, 538002, 653344, 707282, 872644, 923522, 1114112, 1200644
Offset: 1

Views

Author

N. J. A. Sloane, Dec 08 2001

Keywords

Crossrefs

Sequences of the form n^k * Product_ {p|n, p prime} (1 + 1/p^k) for k=0..10: A034444 (k=0), A001615 (k=1), A065958 (k=2), A065959 (k=3), this sequence (k=4), A351300 (k=5), A351301 (k=6), A351302 (k=7), A351303 (k=8), A351304 (k=9), A351305 (k=10).

Programs

  • Maple
    A065960 := proc(n) n^4*mul(1+1/p^4,p=numtheory[factorset](n)) ; end proc:
    seq(A065960(n),n=1..20) ; # R. J. Mathar, Jun 06 2011
  • Mathematica
    a[n_] := n^4*DivisorSum[n, MoebiusMu[#]^2/#^4&]; Array[a, 40] (* Jean-François Alcover, Dec 01 2015 *)
    f[p_, e_] := p^(4*e) + p^(4*(e-1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 12 2020 *)
  • PARI
    for(n=1,100,print1(n^4*sumdiv(n,d,moebius(d)^2/d^4),","))

Formula

Multiplicative with a(p^e) = p^(4*e)+p^(4*e-4). - Vladeta Jovovic, Dec 09 2001
a(n) = n^4 * Sum_{d|n} mu(d)^2/d^4. - Benoit Cloitre, Apr 07 2002
a(n) = J_8(n)/J_4(n) = A069093(n)/A059377(n), where J_k is the k-th Jordan Totient Function. - Enrique Pérez Herrero, Aug 29 2010
Dirichlet g.f.: zeta(s)*zeta(s-4)/zeta(2*s). - R. J. Mathar, Jun 06 2011
From Vaclav Kotesovec, Sep 19 2020: (Start)
Sum_{k=1..n} a(k) ~ 18711*zeta(5)*n^5 / Pi^10.
Sum_{k>=1} 1/a(k) = Product_{primes p} (1 + p^4/(p^8-1)) = 1.078178802583045599985995264729541574821218371712364313741065126120993131... (End)

A351248 a(n) = n^8 * Sum_{p|n, p prime} 1/p^8.

Original entry on oeis.org

0, 1, 1, 256, 1, 6817, 1, 65536, 6561, 390881, 1, 1745152, 1, 5765057, 397186, 16777216, 1, 44726337, 1, 100065536, 5771362, 214359137, 1, 446758912, 390625, 815730977, 43046721, 1475854592, 1, 2664570241, 1, 4294967296, 214365442, 6975757697, 6155426, 11449942272
Offset: 1

Views

Author

Wesley Ivan Hurt, Feb 05 2022

Keywords

Comments

Dirichlet convolution of A010051(n) and n^8. - Wesley Ivan Hurt, Jul 15 2025

Examples

			a(6) = 6817; a(6) = 6^8 * Sum_{p|6, p prime} 1/p^8 = 1679616 * (1/2^8 + 1/3^8) = 6817.
		

Crossrefs

Sequences of the form n^k * Sum_{p|n, p prime} 1/p^k for k = 0..10: A001221 (k=0), A069359 (k=1), A322078 (k=2), A351242 (k=3), A351244 (k=4), A351245 (k=5), A351246 (k=6), A351247 (k=7), this sequence (k=8), A351249 (k=9), A351262 (k=10).

Programs

  • Mathematica
    Array[#^8*DivisorSum[#, 1/#^8 &, PrimeQ] &, 36] (* Stefano Spezia, Jul 15 2025 *)
  • Python
    from sympy import primefactors
    def A351248(n): return sum((n//p)**8 for p in primefactors(n)) # Chai Wah Wu, Feb 05 2022

Formula

a(A000040(n)) = 1.
a(n) = Sum_{d|n} A069093(d)*A001221(n/d). - Ridouane Oudra, Jul 15 2025
From Wesley Ivan Hurt, Jul 15 2025: (Start)
a(n) = Sum_{d|n} c(d) * (n/d)^8, where c = A010051.
a(p^k) = p^(8*k-8) for p prime and k>=1. (End)

A351303 a(n) = n^8 * Product_{p|n, p prime} (1 + 1/p^8).

Original entry on oeis.org

1, 257, 6562, 65792, 390626, 1686434, 5764802, 16842752, 43053282, 100390882, 214358882, 431727104, 815730722, 1481554114, 2563287812, 4311744512, 6975757442, 11064693474, 16983563042, 25700065792, 37828630724, 55090232674, 78310985282, 110522138624, 152588281250
Offset: 1

Views

Author

Wesley Ivan Hurt, Feb 06 2022

Keywords

Comments

Sum of the 8th powers of the divisor complements of the squarefree divisors of n.

Crossrefs

Cf. A008683 (mu).
Sequences of the form n^k * Product_ {p|n, p prime} (1 + 1/p^k) for k=0..10: A034444 (k=0), A001615 (k=1), A065958 (k=2), A065959 (k=3), A065960 (k=4), A351300 (k=5), A351301 (k=6), A351302 (k=7), this sequence (k=8), A351304 (k=9), A351305 (k=10).

Programs

  • Mathematica
    f[p_, e_] := p^(8*e) + p^(8*(e-1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 25] (* Amiram Eldar, Feb 08 2022 *)
  • PARI
    a(n)=sumdiv(n, d, moebius(n/d)^2*d^8);
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 + X)/(1 - p^8*X))[n], ", ")) \\ Vaclav Kotesovec, Feb 12 2022

Formula

a(n) = Sum_{d|n} d^8 * mu(n/d)^2.
a(n) = n^8 * Sum_{d|n} mu(d)^2 / d^8.
Multiplicative with a(p^e) = p^(8*e) + p^(8*e-8). - Sebastian Karlsson, Feb 08 2022
From Vaclav Kotesovec, Feb 12 2022: (Start)
Dirichlet g.f.: zeta(s)*zeta(s-8)/zeta(2*s).
Sum_{k=1..n} a(k) ~ n^9 * zeta(9) / (9 * zeta(18)) = 4331032831125 * n^9 * zeta(9) / (43867 * Pi^18).
Sum_{k>=1} 1/a(k) = Product_{primes p} (1 + p^8/(p^16-1)) = 1.004062071480173688638170669970682370243496458304179434830922739661777... (End)
a(n) = J_16(n)/J_8(n) = J_16(n)/A069093(n), where J_k is the k-th Jordan totient function. - Enrique Pérez Herrero, Nov 14 2022

A069092 Jordan function J_7(n).

Original entry on oeis.org

1, 127, 2186, 16256, 78124, 277622, 823542, 2080768, 4780782, 9921748, 19487170, 35535616, 62748516, 104589834, 170779064, 266338304, 410338672, 607159314, 893871738, 1269983744, 1800262812, 2474870590, 3404825446, 4548558848
Offset: 1

Views

Author

Benoit Cloitre, Apr 05 2002

Keywords

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 199, #3.

Crossrefs

Cf. A059379 and A059380 (triangle of values of J_k(n)), A000010 (J_1), A059376 (J_3), A059377 (J_4), A059378 (J_5).
Cf. A069091 (J_6), A069092 (J_7), A069093 (J_8), A069094 (J_9), A069095 (J_10). [Enrique Pérez Herrero, Nov 02 2010]
Cf. A013666.

Programs

  • Mathematica
    JordanTotient[n_, k_: 1] := DivisorSum[n, (#^k)*MoebiusMu[n/# ] &] /; (n > 0) && IntegerQ[n]
    A069092[n_] := JordanTotient[n, 7]; (* Enrique Pérez Herrero, Nov 02 2010 *)
    f[p_, e_] := p^(7*e) - p^(7*(e-1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 12 2020 *)
  • PARI
    for(n=1, 100, print1(sumdiv(n, d, d^7*moebius(n/d)), ", "))

Formula

a(n) = Sum_{d|n} d^7*mu(n/d).
Multiplicative with a(p^e) = p^(7e)-p^(7(e-1)).
Dirichlet generating function: zeta(s-7)/zeta(s). - Ralf Stephan, Jul 04 2013
a(n) = n^7*Product_{distinct primes p dividing n} (1-1/p^7). - Tom Edgar, Jan 09 2015
Sum_{k=1..n} a(k) ~ 4725*n^8 / (4*Pi^8). - Vaclav Kotesovec, Feb 07 2019
From Amiram Eldar, Oct 12 2020: (Start)
lim_{n->oo} (1/n) * Sum_{k=1..n} a(k)/k^7 = 1/zeta(8).
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + p^7/(p^7-1)^2) = 1.0084115178... (End)
O.g.f.: Sum_{n >= 1} mu(n)*A_7(x^n)/(1 - x^n)^8 = x + 127*x^2 + 2186*x^3 + 16256*x^4 + 78124*x^5 + ..., where A_7(x) = x + 120*x^2 + 1191*x^3 + 2416*x^4 + 1191*x^5 + 120*x^6 + x^7 is the 7th Eulerian polynomial. See A008292. - Peter Bala, Jan 31 2022

A160908 a(n) = Sum_{d|n} Moebius(n/d)*d^(b-1)/phi(n) for b = 9.

Original entry on oeis.org

1, 255, 3280, 32640, 97656, 836400, 960800, 4177920, 7173360, 24902280, 21435888, 107059200, 67977560, 245004000, 320311680, 534773760, 435984840, 1829206800, 943531280, 3187491840, 3151424000, 5466151440, 3559590240, 13703577600, 7629375000, 17334277800
Offset: 1

Views

Author

N. J. A. Sloane, Nov 19 2009

Keywords

Comments

a(n) is the number of lattices L in Z^8 such that the quotient group Z^8 / L is C_n. - Álvar Ibeas, Oct 30 2015

Crossrefs

Programs

  • Mathematica
    A160908[n_]:=DivisorSum[n,MoebiusMu[n/# ]*#^(9-1)/EulerPhi[n]&] (* Enrique Pérez Herrero, Oct 28 2010 *)
    f[p_, e_] := p^(7*e - 7) * (p^8-1) / (p-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 25] (* Amiram Eldar, Nov 08 2022 *)
  • PARI
    vector(30, n, sumdiv(n^7, d, if(ispower(d, 8), moebius(sqrtnint(d, 8))*sigma(n^7/d), 0))) \\ Altug Alkan, Oct 30 2015
    
  • PARI
    a(n) = {f = factor(n); for (i=1, #f~, p = f[i,1]; f[i,1] = p^(7*f[i,2]-7)*(p^8-1)/(p-1); f[i,2] = 1;); factorback(f);} \\ Michel Marcus, Nov 12 2015

Formula

a(n) = J_8(n)/J_1(n) = J_8(n)/phi(n) = A069093(n)/A000010(n), where J_k is the k-th Jordan totient function. - Enrique Pérez Herrero, Oct 28 2010
From Álvar Ibeas, Oct 30 2015: (Start)
Multiplicative with a(p^e) = p^(7e-7) * (p^8-1) / (p-1).
For squarefree n, a(n) = A000203(n^7). (End)
From Amiram Eldar, Nov 08 2022: (Start)
Sum_{k=1..n} a(k) ~ c * n^8, where c = (1/8) * Product_{p prime} (1 + (p^7-1)/((p-1)*p^8)) = 0.2423008904... .
Sum_{k>=1} 1/a(k) = zeta(7)*zeta(8) * Product_{p prime} (1 - 2/p^8 + 1/p^15) = 1.004270064601... . (End)
a(n) = (1/n) * Sum_{d|n} mu(n/d)*sigma(d^8). - Ridouane Oudra, Apr 01 2025

Extensions

Definition corrected by Enrique Pérez Herrero, Oct 28 2010

A194533 Jordan function ratio J_8(n)/J_2(n).

Original entry on oeis.org

1, 85, 820, 5440, 16276, 69700, 120100, 348160, 597780, 1383460, 1786324, 4460800, 4855540, 10208500, 13346320, 22282240, 24221380, 50811300, 47176564, 88541440, 98482000, 151837540, 148316260, 285491200, 254312500, 412720900, 435781620, 653344000, 595531444
Offset: 1

Views

Author

R. J. Mathar, Aug 28 2011

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(6*(e - 1))*(p^2 + 1)*(p^4 + 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 01 2022 *)

Formula

a(n) = A069093(n)/A007434(n) = A065960(n) * A065958(n).
Multiplicative with a(p^e) = p^(6*(e-1))*(p^2+1)*(p^4+1), e>0.
Dirichlet g.f.: zeta(s-6)*Product_{primes p} (1+p^(4-s)+p^(2-s)+p^(-s)).
Dirichlet convolution of A001014 with the multiplicative sequence 1, 21, 91, 0, 651, 1911, 2451, 0, 0, 13671, 14763, 0, 28731, 51471...
Sum_{k=1..n} a(k) ~ c * n^7 / 7, where c = Product_{primes p} (1 + 1/p^3 + 1/p^5 + 1/p^7) = 1.22847463998021088097249049512949441921891884186337179613337753... - Vaclav Kotesovec, Dec 18 2019

A336488 Values taken by all the Jordan totient functions J_k(m) for k >= 1 and m >= 1.

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 8, 10, 12, 15, 16, 18, 20, 22, 24, 26, 28, 30, 31, 32, 36, 40, 42, 44, 46, 48, 52, 54, 56, 58, 60, 63, 64, 66, 70, 72, 78, 80, 82, 84, 88, 92, 96, 100, 102, 104, 106, 108, 110, 112, 116, 120, 124, 126, 127, 128, 130, 132, 136, 138, 140, 144, 148
Offset: 1

Views

Author

Amiram Eldar, Jul 23 2020

Keywords

Comments

The asymptotic density of this sequence is 0 (Rao and Murty, 1979).
First differs from A221178 at n = 75, since a(75) = J_3(6) = 182 is not a term of A221178.

Crossrefs

Programs

  • Mathematica
    phiQ[m_] := Select[Range[m + 1, 2 m*Product[(1 - 1/(k*Log[k]))^(-1), {k, 2, DivisorSigma[0, m]}]], EulerPhi[#] == m &, 1] != {}; jor[k_, n_] := DivisorSum[n, #^k*MoebiusMu[n/#] &]; jorval[k_, mx_] := jor[k, #] & /@ Range[Floor@Surd[mx*Zeta[k], k]]; mx = 300; Select[Union @ Flatten[{Select[Range[mx], phiQ], jorval[#, mx] & /@ Range[2, Floor[Log2[mx]]]}], # <= mx &] (* using code by Jean-François Alcover at A002202 *)
Showing 1-8 of 8 results.