cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A000538 Sum of fourth powers: 0^4 + 1^4 + ... + n^4.

Original entry on oeis.org

0, 1, 17, 98, 354, 979, 2275, 4676, 8772, 15333, 25333, 39974, 60710, 89271, 127687, 178312, 243848, 327369, 432345, 562666, 722666, 917147, 1151403, 1431244, 1763020, 2153645, 2610621, 3142062, 3756718, 4463999, 5273999, 6197520, 7246096, 8432017, 9768353
Offset: 0

Views

Author

Keywords

Comments

This sequence is related to A000537 by the transform a(n) = n*A000537(n) - Sum_{i=0..n-1} A000537(i). - Bruno Berselli, Apr 26 2010
A formula for the r-th successive summation of k^4, for k = 1 to n, is ((12*n^2+(12*n-5)*r+r^2)*(2*n+r)*(n+r)!)/((r+4)!*(n-1)!), (H. W. Gould). - Gary Detlefs, Jan 02 2014
The number of four dimensional hypercubes in a 4D grid with side lengths n. This applies in general to k dimensions. That is, the number of k-dimensional hypercubes in a k-dimensional grid with side lengths n is equal to the sum of 1^k + 2^k + ... + n^k. - Alejandro Rodriguez, Oct 20 2020

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 813.
  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 222.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 155.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1991, p. 275.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a000538 n = (3 * n * (n + 1) - 1) * (2 * n + 1) * (n + 1) * n `div` 30
    -- Reinhard Zumkeller, Nov 11 2012
    
  • Magma
    [n*(1+n)*(1+2*n)*(-1+3*n+3*n^2)/30: n in [0..35]]; // Vincenzo Librandi, Apr 04 2015
  • Maple
    A000538 := n-> n*(n+1)*(2*n+1)*(3*n^2+3*n-1)/30;
  • Mathematica
    Accumulate[Range[0,40]^4] (* Harvey P. Dale, Jan 13 2011 *)
    CoefficientList[Series[x (1 + 11 x + 11 x^2 + x^3)/(1 - x)^6, {x, 0, 40}], x] (* Vincenzo Librandi, Dec 07 2015 *)
    LinearRecurrence[{6, -15, 20, -15, 6, -1}, {0, 1, 17, 98, 354, 979}, 35] (* Jean-François Alcover, Feb 09 2016 *)
    Table[x^5/5+x^4/2+x^3/3-x/30,{x,40}] (* Harvey P. Dale, Jun 06 2021 *)
  • Maxima
    A000538(n):=n*(n+1)*(2*n+1)*(3*n^2+3*n-1)/30$
    makelist(A000538(n),n,0,30); /* Martin Ettl, Nov 12 2012 */
    
  • PARI
    a(n) = n*(1+n)*(1+2*n)*(-1+3*n+3*n^2)/30 \\ Charles R Greathouse IV, Nov 20 2012
    
  • PARI
    concat(0, Vec(x*(1+11*x+11*x^2+x^3)/(1-x)^6 + O(x^100))) \\ Altug Alkan, Dec 07 2015
    
  • Python
    A000538_list, m = [0], [24, -36, 14, -1, 0, 0]
    for _ in range(10**2):
        for i in range(5):
            m[i+1] += m[i]
        A000538_list.append(m[-1]) # Chai Wah Wu, Nov 05 2014
    
  • Python
    def A000538(n): return n*(n**2*(n*(6*n+15)+10)-1)//30 # Chai Wah Wu, Oct 03 2024
    
  • Sage
    [bernoulli_polynomial(n,5)/5 for n in range(1, 35)] # Zerinvary Lajos, May 17 2009
    

Formula

a(n) = n*(1+n)*(1+2*n)*(-1+3*n+3*n^2)/30.
The preceding formula is due to al-Kachi (1394-1437). - Juri-Stepan Gerasimov, Jul 12 2009
G.f.: x*(x+1)*(1+10*x+x^2)/(1-x)^6. Simon Plouffe in his 1992 dissertation. More generally, the o.g.f. for Sum_{k=0..n} k^m is x*E(m, x)/(1-x)^(m+2), where E(m, x) is the Eulerian polynomial of degree m (cf. A008292). The e.g.f. for these o.g.f.s is: x/(1-x)^2*(exp(y/(1-x))-exp(x*y/(1-x)))/(exp(x*y/(1-x))-x*exp(y/(1-x))). - Vladeta Jovovic, May 08 2002
a(n) = Sum_{i = 1..n} J_4(i)*floor(n/i), where J_4 is A059377. - Enrique Pérez Herrero, Feb 26 2012
a(n) = 5*a(n-1) - 10* a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) + 24. - Ant King, Sep 23 2013
a(n) = -Sum_{j=1..4} j*Stirling1(n+1,n+1-j)*Stirling2(n+4-j,n). - Mircea Merca, Jan 25 2014
Sum_{n>=1} (-1)^(n+1)/a(n) = -30*(4 + 3/cos(sqrt(7/3)*Pi/2))*Pi/7. - Vaclav Kotesovec, Feb 13 2015
a(n) = (n + 1)*(n + 1/2)*n*(n + 1/2 + sqrt(7/12))*(n + 1/2 - sqrt(7/12))/5, see the Graham et al. reference, p. 275. - Wolfdieter Lang, Apr 02 2015

Extensions

The general V. Jovovic formula has been slightly changed after his approval by Wolfdieter Lang, Nov 03 2011

A001016 Eighth powers: a(n) = n^8.

Original entry on oeis.org

0, 1, 256, 6561, 65536, 390625, 1679616, 5764801, 16777216, 43046721, 100000000, 214358881, 429981696, 815730721, 1475789056, 2562890625, 4294967296, 6975757441, 11019960576, 16983563041, 25600000000, 37822859361, 54875873536, 78310985281, 110075314176
Offset: 0

Views

Author

Keywords

Comments

Besides the first term, this sequence lists the denominators in Pi^8/9450 = 1 + 1/256 + 1/6561 + 1/65536 + 1/390625 + 1/1679616 + ... - Mohammad K. Azarian, Nov 01 2011, edited by M. F. Hasler, Jul 03 2025
For n > 0, a(n) is the largest number k such that k + n^4 divides k^2 + n^4. - Derek Orr, Oct 01 2014
Fourth powers of squares and squares of 4th powers. Squares composed with themselves twice. - Wesley Ivan Hurt, Apr 01 2016

References

  • Granino A. Korn and Theresa M. Korn, Mathematical Handbook for Scientists and Engineers, McGraw-Hill Book Company, New York (1968), p. 982.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000290 (squares), A000583 (fourth powers), A001014 - A001017 (6th - 9th powers), A008454 (10th powers), A010801 (13th powers).
Cf. A000542 (partial sums), A022524 (first differences), A013666 (zeta(8)).
Cf. A003380 - A003390 (sums of 2, ..., 12 eighth powers).

Programs

Formula

Multiplicative with a(p^e) = p^(8e). - David W. Wilson, Aug 01 2001
Totally multiplicative sequence with a(p) = p^8 for primes p. - Jaroslav Krizek, Nov 01 2009
G.f.: -x*(1+x)*(x^6+246*x^5+4047*x^4+11572*x^3+4047*x^2+246*x+1)/(x-1)^9. - R. J. Mathar, Jan 07 2011
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) + 40320. - Ant King, Sep 24 2013
From Wesley Ivan Hurt, Apr 01 2016: (Start)
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n > 8.
a(n) = A000290(n)^4 = A000290(A000290(A000290(n))).
a(n) = A000583(n)^2. (End)
From Amiram Eldar, Oct 08 2020: (Start)
Sum_{n>=1} 1/a(n) = zeta(8) = Pi^8/9450 (A013666).
Sum_{n>=1} (-1)^(n+1)/a(n) = 127*zeta(8)/128 = 127*Pi^8/1209600. (End)
E.g.f.: exp(x)*x*(1 + 127*x + 966*x^2 + 1701*x^3 + 1050*x^4 + 266*x^5 + 28*x^6 + x^7). - Stefano Spezia, Jul 29 2022

Extensions

More terms from James Sellers, Sep 19 2000

A103438 Square array T(m,n) read by antidiagonals: Sum_{k=1..n} k^m.

Original entry on oeis.org

0, 0, 1, 0, 1, 2, 0, 1, 3, 3, 0, 1, 5, 6, 4, 0, 1, 9, 14, 10, 5, 0, 1, 17, 36, 30, 15, 6, 0, 1, 33, 98, 100, 55, 21, 7, 0, 1, 65, 276, 354, 225, 91, 28, 8, 0, 1, 129, 794, 1300, 979, 441, 140, 36, 9, 0, 1, 257, 2316, 4890, 4425, 2275, 784, 204, 45, 10
Offset: 0

Views

Author

Ralf Stephan, Feb 11 2005

Keywords

Comments

For the o.g.f.s of the column sequences for this array, see A196837 and the link given there. - Wolfdieter Lang, Oct 15 2011
T(m,n)/n is the m-th moment of the discrete uniform distribution on {1,2,...,n}. - Geoffrey Critzer, Dec 31 2018
T(1,n) divides T(m,n) for odd m. - Franz Vrabec, Dec 23 2020

Examples

			Square array begins:
  0, 1,  2,   3,    4,     5,     6,      7,      8,      9, ... A001477;
  0, 1,  3,   6,   10,    15,    21,     28,     36,     45, ... A000217;
  0, 1,  5,  14,   30,    55,    91,    140,    204,    285, ... A000330;
  0, 1,  9,  36,  100,   225,   441,    784,   1296,   2025, ... A000537;
  0, 1, 17,  98,  354,   979,  2275,   4676,   8772,  15333, ... A000538;
  0, 1, 33, 276, 1300,  4425, 12201,  29008,  61776, 120825, ... A000539;
  0, 1, 65, 794, 4890, 20515, 67171, 184820, 446964, 978405, ... A000540;
Antidiagonal triangle begins as:
  0;
  0, 1;
  0, 1,  2;
  0, 1,  3,  3;
  0, 1,  5,  6,  4;
  0, 1,  9, 14, 10,  5;
  0, 1, 17, 36, 30, 15, 6;
		

References

  • J. Faulhaber, Academia Algebrae, Darinnen die miraculosische inventiones zu den höchsten Cossen weiters continuirt und profitirt werden, Augspurg, bey Johann Ulrich Schönigs, 1631.

Crossrefs

Diagonals include A076015 and A031971.
Antidiagonal sums are in A103439.
Antidiagonals are the rows of triangle A192001.

Programs

  • Magma
    T:= func< n,k | n eq 0 select k else (&+[j^n: j in [0..k]]) >;
    [T(n-k,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Dec 22 2021
    
  • Maple
    seq(print(seq(Zeta(0,-k,1)-Zeta(0,-k,n+1),n=0..9)),k=0..6);
    # (Produces the square array from the example.) Peter Luschny, Nov 16 2008
    # alternative
    A103438 := proc(m,n)
        (bernoulli(m+1,n+1)-bernoulli(m+1))/(m+1) ;
        if m = 0 then
            %-1 ;
        else
            % ;
        end if;
    end proc: # R. J. Mathar, May 10 2013
    # simpler:
    A103438 := proc(m,n)
        (bernoulli(m+1,n+1)-bernoulli(m+1,1))/(m+1) ;
    end proc: # Peter Luschny, Mar 20 2024
  • Mathematica
    T[m_, n_]:= HarmonicNumber[m, -n]; Flatten[Table[T[m-n, n], {m, 0, 11}, {n, m, 0, -1}]] (* Jean-François Alcover, May 11 2012 *)
  • PARI
    T(m,n)=sum(k=0,n,k^m)
    
  • Python
    from itertools import count, islice
    from math import comb
    from fractions import Fraction
    from sympy import bernoulli
    def A103438_T(m,n): return sum(k**m for k in range(1,n+1)) if n<=m else int(sum(comb(m+1,i)*(bernoulli(i) if i!=1 else Fraction(1,2))*n**(m-i+1) for i in range(m+1))/(m+1))
    def A103438_gen(): # generator of terms
        for m in count(0):
            for n in range(m+1):
                yield A103438_T(m-n,n)
    A103438_list = list(islice(A103438_gen(),100)) # Chai Wah Wu, Oct 23 2024
  • SageMath
    def T(n,k): return (bernoulli_polynomial(k+1, n+1) - bernoulli_polynomial(1, n+1)) /(n+1)
    flatten([[T(n-k,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Dec 22 2021
    

Formula

E.g.f.: e^x*(e^(x*y)-1)/(e^x-1).
T(m, n) = Zeta(-n, 1) - Zeta(-n, m + 1), for m >= 0 and n >= 0, where Zeta(z, v) is the Hurwitz zeta function. - Peter Luschny, Nov 16 2008
T(m, n) = HarmonicNumber(m, -n). - Jean-François Alcover, May 11 2012
T(m, n) = (Bernoulli(m + 1, n + 1) - Bernoulli(m + 1, 1)) / (m + 1). - Peter Luschny, Mar 20 2024
T(m, n) = Sum_{k=0...m-n} B(k)*(-1)^k*binomial(m-n,k)*n^(m-n-k+1)/(m-n-k+1), where B(k) = Bernoulli number A027641(k) / A027642(k). - Robert B Fowler, Aug 20 2024
T(m, n) = Sum_{i=1..n} J_m(i)*floor(n/i), where J_m is the m-th Jordan totient function. - Ridouane Oudra, Jul 19 2025

A254647 Fourth partial sums of eighth powers (A001016).

Original entry on oeis.org

1, 260, 7595, 94360, 723534, 4037712, 17944290, 67127880, 219319815, 642251428, 1718012933, 4258676240, 9892043980, 21721707840, 45414150132, 90930820464, 175208925885, 326205634020, 588861675535, 1033717781096, 1769137540730, 2958360418000, 4842936861750, 7774492635000
Offset: 1

Views

Author

Luciano Ancora, Feb 05 2015

Keywords

Examples

			The eighth powers:   1, 256, 6561, 65536, 390625, ... (A001016)
First partial sums:  1, 257, 6818, 72354, 462979, ... (A000542)
Second partial sums: 1, 258, 7076, 79430, 542409, ... (A253636)
Third partial sums:  1, 259, 7335, 86765, 629174, ... (A254642)
Fourth partial sums: 1, 260, 7595, 94360, 723534, ... (this sequence)
		

Crossrefs

Programs

  • GAP
    List([1..30], n-> Binomial(n+4,5)*(n+2)*((n+2)^2-3)*(2*(n+2)^4 -28*(n+2)^2 +101)/198); # G. C. Greubel, Aug 28 2019
  • Magma
    [Binomial(n+4,5)*(n+2)*((n+2)^2-3)*(2*(n+2)^4 -28*(n+2)^2 +101)/198: n in [1..30]]; // G. C. Greubel, Aug 28 2019
    
  • Maple
    seq(binomial(n+4,5)*(n+2)*((n+2)^2-3)*(2*(n+2)^4 -28*(n+2)^2 +101)/198, n=1..30); # G. C. Greubel, Aug 28 2019
  • Mathematica
    Table[n(1+n)(2+n)^2(3+n)(4+n)(1+4n+n^2)(21 -48n +20n^2 +16n^3 +2n^4 )/23760, {n,20}] (* or *)
    Accumulate[Accumulate[Accumulate[Accumulate[Range[20]^8]]]] (* or *)
    CoefficientList[Series[(1 +247x +4293x^2 +15619x^3 +15619x^4 +4293x^5 + 247x^6 +x^7)/(1-x)^13, {x,0,19}], x]
  • PARI
    a(n)=n*(1+n)*(2+n)^2*(3+n)*(4+n)*(1+4*n+n^2)*(21-48*n+20*n^2 +16*n^3+2*n^4)/23760 \\ Charles R Greathouse IV, Sep 08 2015
    
  • PARI
    vector(30, n, m=n+2; binomial(m+2,5)*m*(m^2-3)*(2*m^4-28*m^2 +101)/198)
    
  • Sage
    [binomial(n+4,5)*(n+2)*((n+2)^2-3)*(2*(n+2)^4 -28*(n+2)^2 +101)/198 for n in (1..30)] # G. C. Greubel, Aug 28 2019
    

Formula

G.f.: x*(1 +247*x +4293*x^2 +15619*x^3 +15619*x^4 +4293*x^5 +247*x^6 +x^7)/(1-x)^13.
a(n) = n*(1+n)*(2+n)^2*(3+n)*(4+n)*(1 +4*n +n^2)*(21 -48*n +20*n^2 + 16*n^3 +2*n^4)/23760.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) + n^8.

A323546 a(n) = Product_{k=0..n} (k^8 + (n-k)^8).

Original entry on oeis.org

0, 1, 131072, 2843192875329, 94689598336441253888, 30456484467910986480712890625, 24450543078081443740165325452474318848, 74458223912158060479139869222818674648092178561, 545831702006800417886454373052629612732034857946832699392
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 17 2019

Keywords

Crossrefs

Cf. 2*A000542 (with sum instead of product).

Programs

  • Mathematica
    Table[Product[k^8+(n-k)^8, {k, 0, n}], {n, 0, 10}]
  • PARI
    m=8; vector(10, n, n--; prod(k=0,n, k^m + (n-k)^m)) \\ G. C. Greubel, Jan 18 2019
    
  • Sage
    m=8; [product(k^m +(n-k)^m for k in (0..n)) for n in (0..10)] # G. C. Greubel, Jan 18 2019

Formula

a(n) ~ exp(((2*sqrt(2+sqrt(2)) - 1/2 - sqrt(2))*Pi - 8)*n) * n^(8*n+8).

A007487 Sum of 9th powers.

Original entry on oeis.org

0, 1, 513, 20196, 282340, 2235465, 12313161, 52666768, 186884496, 574304985, 1574304985, 3932252676, 9092033028, 19696532401, 40357579185, 78800938560, 147520415296, 266108291793, 464467582161, 787155279940, 1299155279940, 2093435326521, 3300704544313
Offset: 0

Views

Author

Keywords

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 815.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row 9 of array A103438.

Programs

  • Magma
    [&+[n^9: n in [0..m]]: m in [0..22]]; // Bruno Berselli, Aug 23 2011
    
  • Maple
    [seq(add(i^9,i=1..n),n=0..40)];
    a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=a[n-1]+n^9 od: seq(a[n], n=0..22); # Zerinvary Lajos, Feb 22 2008
  • Mathematica
    lst={};s=0;Do[s=s+n^9;AppendTo[lst, s], {n, 10^2}];lst..or..Table[Sum[k^9, {k, 1, n}], {n, 0, 100}] (* Vladimir Joseph Stephan Orlovsky, Aug 14 2008 *)
    Accumulate[Range[0,30]^9] (* Harvey P. Dale, Oct 09 2016 *)
  • PARI
    a(n)=n^2*(n+1)^2*(n^2+n-1)*(2*n^4+4*n^3-n^2-3*n+3)/20 \\ Charles R Greathouse IV, Oct 07 2015
  • Python
    A007487_list, m = [0], [362880, -1451520, 2328480, -1905120, 834120, -186480, 18150, -510, 1, 0, 0]
    for _ in range(10**2):
        for i in range(10):
            m[i+1]+= m[i]
        A007487_list.append(m[-1]) # Chai Wah Wu, Nov 05 2014
    

Formula

a(n) = n^2*(n+1)^2*(n^2+n-1)*(2*n^4+4*n^3-n^2-3*n+3)/20 (see MathWorld, Power Sum, formula 39). a(n) = n*A000542(n) - Sum_{i=0..n-1} A000542(i). - Bruno Berselli, Apr 26 2010
G.f.: x*(1 + 502*x + 14608*x^2 + 88234*x^3 + 156190*x^4 + 88234*x^5 + 14608*x^6 + 502*x^7 + x^8)/(1-x)^11. a(n) = a(-n-1). - Bruno Berselli, Aug 23 2011
a(n) = -Sum_{j=1..9} j*Stirling1(n+1,n+1-j)*Stirling2(n+9-j,n). - Mircea Merca, Jan 25 2014
a(n) = (16/5)*A000217(n)^5 - 4*A000217(n)^4 + (12/5)*A000217(n)^3 - (3/5)*A000217(n)^2. - Michael Raney, Mar 14 2016
a(n) = 11*a(n-1) - 55*a(n-2) + 165*a(n-3) - 330*a(n-4) + 462*a(n-5) - 462*a(n-6) + 330*a(n-7) - 165*a(n-8) + 55*a(n-9) - 11*a(n-10) + a(n-11) for n > 10. - Wesley Ivan Hurt, Dec 21 2016
a(n) = 288*A005585(n-1)^2 + 1728*A108679(n-3) + A062392(n)^2. - Yasser Arath Chavez Reyes, May 11 2024
a(n) = Sum_{i=1..n} J_9(i)*floor(n/i), where J_9 is A069094. - Ridouane Oudra, Jul 17 2025

A023002 Sum of 10th powers.

Original entry on oeis.org

0, 1, 1025, 60074, 1108650, 10874275, 71340451, 353815700, 1427557524, 4914341925, 14914341925, 40851766526, 102769130750, 240627622599, 529882277575, 1106532668200, 2206044295976, 4222038196425, 7792505423049, 13923571680850
Offset: 0

Views

Author

Keywords

Crossrefs

Sequences of the form Sum_{j=0..n} j^m : A000217 (m=1), A000330 (m=2), A000537 (m=3), A000538 (m=4), A000539 (m=5), A000540 (m=6), A000541 (m=7), A000542 (m=8), A007487 (m=9), this sequence (m=10), A123095 (m=11), A123094 (m=12), A181134 (m=13).
Row 10 of array A103438.

Programs

Formula

a(n) = n*(n+1)*(2*n+1)*(n^2+n-1)(3*n^6 +9*n^5 +2*n^4 -11*n^3 +3*n^2 +10*n -5)/66 (see MathWorld, Power Sum, formula 40). - Bruno Berselli, Apr 26 2010
a(n) = n*A007487(n) - Sum_{i=0..n-1} A007487(i). - Bruno Berselli, Apr 27 2010
From Bruno Berselli, Aug 23 2011: (Start)
a(n) = -a(-n-1).
G.f.: x*(1+x)*(1 +1012*x +46828*x^2 +408364*x^3 +901990*x^4 +408364*x^5 +46828*x^6 +1012*x^7 +x^8)/(1-x)^12. (End)
a(n) = (-1)*Sum_{j=1..10} j*Stirling1(n+1,n+1-j)*Stirling2(n+10-j,n). - Mircea Merca, Jan 25 2014
a(n) = Sum_{i=1..n} J_10(i)*floor(n/i), where J_10 is A069095. - Ridouane Oudra, Jul 17 2025

A101095 Fourth difference of fifth powers (A000584).

Original entry on oeis.org

1, 28, 121, 240, 360, 480, 600, 720, 840, 960, 1080, 1200, 1320, 1440, 1560, 1680, 1800, 1920, 2040, 2160, 2280, 2400, 2520, 2640, 2760, 2880, 3000, 3120, 3240, 3360, 3480, 3600, 3720, 3840, 3960, 4080, 4200, 4320, 4440, 4560, 4680, 4800, 4920, 5040, 5160, 5280
Offset: 1

Views

Author

Cecilia Rossiter, Dec 15 2004

Keywords

Comments

Original Name: Shells (nexus numbers) of shells of shells of shells of the power of 5.
The (Worpitzky/Euler/Pascal Cube) "MagicNKZ" algorithm is: MagicNKZ(n,k,z) = Sum_{j=0..k+1} (-1)^j*binomial(n + 1 - z, j)*(k - j + 1)^n, with k>=0, n>=1, z>=0. MagicNKZ is used to generate the n-th accumulation sequence of the z-th row of the Euler Triangle (A008292). For example, MagicNKZ(3,k,0) is the 3rd row of the Euler Triangle (followed by zeros) and MagicNKZ(10,k,1) is the partial sums of the 10th row of the Euler Triangle. This sequence is MagicNKZ(5,k-1,2).

Crossrefs

Fourth differences of A000584, third differences of A022521, second differences of A101098, and first differences of A101096.
For other sequences based upon MagicNKZ(n,k,z):
...... | n = 1 | n = 2 | n = 3 | n = 4 | n = 5 | n = 6 | n = 7 | n = 8
--------------------------------------------------------------------------------------
z = 0 | A000007 | A019590 | ....... MagicNKZ(n,k,0) = T(n,k+1) from A008292 .......
z = 1 | A000012 | A040000 | A101101 | A101104 | A101100 | ....... | ....... | .......
z = 2 | A000027 | A005408 | A008458 | A101103 | thisSeq | ....... | ....... | .......
z = 3 | A000217 | A000290 | A003215 | A005914 | A101096 | ....... | ....... | .......
z = 4 | A000292 | A000330 | A000578 | A005917 | A101098 | ....... | ....... | .......
z = 5 | A000332 | A002415 | A000537 | A000583 | A022521 | ....... | A255181 | .......
z = 12 | A001288 | A057788 | ....... | A254870 | A254471 | A254683 | A254646 | A254642
z = 13 | A010965 | ....... | ....... | ....... | A254871 | A254472 | A254684 | A254647
z = 14 | A010966 | ....... | ....... | ....... | ....... | A254872 | ....... | .......
--------------------------------------------------------------------------------------
Cf. A047969.

Programs

  • Magma
    I:=[1,28,121,240,360]; [n le 5 select I[n] else 2*Self(n-1)-Self(n-2): n in [1..50]]; // Vincenzo Librandi, May 07 2015
    
  • Mathematica
    MagicNKZ=Sum[(-1)^j*Binomial[n+1-z, j]*(k-j+1)^n, {j, 0, k+1}];Table[MagicNKZ, {n, 5, 5}, {z, 2, 2}, {k, 0, 34}]
    CoefficientList[Series[(1 + 26 x + 66 x^2 + 26 x^3 + x^4)/(1 - x)^2, {x, 0, 50}], x] (* Vincenzo Librandi, May 07 2015 *)
    Join[{1,28,121,240},Differences[Range[50]^5,4]] (* or *) LinearRecurrence[{2,-1},{1,28,121,240,360},50] (* Harvey P. Dale, Jun 11 2016 *)
  • PARI
    a(n)=if(n>3, 120*n-240, 33*n^2-72*n+40) \\ Charles R Greathouse IV, Oct 11 2015
  • Sage
    [1,28,121]+[120*(k-2) for k in range(4,36)] # Danny Rorabaugh, Apr 23 2015
    

Formula

a(k+1) = Sum_{j=0..k+1} (-1)^j*binomial(n + 1 - z, j)*(k - j + 1)^n; n = 5, z = 2.
For k>3, a(k) = Sum_{j=0..4} (-1)^j*binomial(4, j)*(k - j)^5 = 120*(k - 2).
a(n) = 2*a(n-1) - a(n-2), n>5. G.f.: x*(1+26*x+66*x^2+26*x^3+x^4) / (1-x)^2. - Colin Barker, Mar 01 2012

Extensions

MagicNKZ material edited, Crossrefs table added, SeriesAtLevelR material removed by Danny Rorabaugh, Apr 23 2015
Name changed and keyword 'uned' removed by Danny Rorabaugh, May 06 2015

A254642 Third partial sums of eighth powers (A001016).

Original entry on oeis.org

1, 259, 7335, 86765, 629174, 3314178, 13906578, 49183590, 152191935, 422931613, 1075761505, 2540663307, 5633367740, 11829663860, 23692442292, 45516670332, 84278105421, 150996708135, 262656041515, 444856105561, 735419759634, 1189222877270
Offset: 1

Views

Author

Luciano Ancora, Feb 05 2015

Keywords

Examples

			First differences:   1, 255, 6305, 58975, 325089, ...(A022524)
--------------------------------------------------------------------
The eighth powers:   1, 256, 6561, 65536, 390625, ...(A001016)
--------------------------------------------------------------------
First partial sums:  1, 257, 6818, 72354, 462979, ...(A000542)
Second partial sums: 1, 258, 7076, 79430, 542409, ...(A253636)
Third partial sums:  1, 259, 7335, 86765, 629174, ...(this sequence)
		

Crossrefs

Programs

  • Mathematica
    Table[n (1 + n) (2 + n) (3 + n) (3 + 2 n) (1 + 36 n - 69 n^2 + 45 n^4 + 18 n^5 + 2 n^6)/3960, {n, 22}]
    Accumulate[Accumulate[Accumulate[Range[22]^8]]]
    CoefficientList[Series[(1 + 247 x + 4293 x^2 + 15619 x^3 + 15619 x^4 + 4293 x^5 + 247 x^6 + x^7)/(- 1 + x)^12, {x, 0, 22}], x]
  • PARI
    a(n)=n*(1+n)*(2+n)*(3+n)*(3+2*n)*(1+36*n-69*n^2+45*n^4+18*n^5+2*n^6)/3960 \\ Charles R Greathouse IV, Oct 07 2015

Formula

G.f.: (x + 247*x^2 + 4293*x^3 + 15619*x^4 + 15619*x^5 + 4293*x^6 + 247*x^7 + x^8)/(- 1 + x)^12.
a(n) = n*(1 + n)*(2 + n)*(3 + n)*(3 + 2*n)*(1 + 36*n - 69*n^2 + 45*n^4 + 18*n^5 + 2*n^6)/3960.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + n^8.

A255178 Second differences of eighth powers (A001016).

Original entry on oeis.org

1, 254, 6050, 52670, 266114, 963902, 2796194, 6927230, 15257090, 30683774, 57405602, 101263934, 170126210, 274309310, 427043234, 644975102, 948713474, 1363412990, 1919399330, 2652834494, 3606422402, 4830154814, 6382097570, 8329217150, 10748247554
Offset: 0

Views

Author

Luciano Ancora, Feb 21 2015

Keywords

Examples

			Second differences:  1, 254, 6050, 52670, 266114, ... (this sequence)
First differences:   1, 255, 6305, 58975, 325089, ... (A022524)
----------------------------------------------------------------------
The eighth powers:   1, 256, 6561, 65536, 390625, ... (A001016)
----------------------------------------------------------------------
First partial sums:  1, 257, 6818, 72354, 462979, ... (A000542)
Second partial sums: 1, 258, 7076, 79430, 542409, ... (A253636)
Third partial sums:  1, 259, 7335, 86765, 629174, ... (A254642)
Fourth partial sums: 1, 260, 7595, 94360, 723534, ... (A254647)
		

Crossrefs

Programs

  • Magma
    [n eq 0 select 1 else 2*(28*n^6+70*n^4+28*n^2+1): n in [0..30]]; // Vincenzo Librandi, Mar 12 2015
  • Mathematica
    Join[{1}, Table[2 (28 n^6 + 70 n^4 + 28 n^2 + 1), {n, 1, 30}]]
    Join[{1},Differences[Range[0,30]^8,2]] (* Harvey P. Dale, Aug 26 2024 *)

Formula

G.f.: (1 + x)*(1 + 246*x + 4047*x^2 + 11572*x^3 + 4047*x^4 + 246*x^5 + x^6)/(1 - x)^7.
a(n) = 2*(28*n^6 + 70*n^4 + 28*n^2 + 1) for n>0, a(0)=1.

Extensions

Edited by Bruno Berselli, Mar 19 2015
Showing 1-10 of 16 results. Next