A000538 Sum of fourth powers: 0^4 + 1^4 + ... + n^4.
0, 1, 17, 98, 354, 979, 2275, 4676, 8772, 15333, 25333, 39974, 60710, 89271, 127687, 178312, 243848, 327369, 432345, 562666, 722666, 917147, 1151403, 1431244, 1763020, 2153645, 2610621, 3142062, 3756718, 4463999, 5273999, 6197520, 7246096, 8432017, 9768353
Offset: 0
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 813.
- A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 222.
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 155.
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1991, p. 275.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..1000
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- J. L. Bailey, Jr., A table to facilitate the fitting of certain logistic curves, Annals Math. Stat., 2 (1931), 355-359.
- J. L. Bailey, A table to facilitate the fitting of certain logistic curves, Annals Math. Stat., 2 (1931), 355-359. [Annotated scanned copy]
- Bruno Berselli, A description of the transform in Comments lines: website Matem@ticamente (in Italian).
- Stefano Capparelli, Notes on Discrete Math, Società Editrice Esculapio SRL (2019) 3-4.
- Feihu Liu, Guoce Xin, and Chen Zhang, Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS, arXiv:2412.18744 [math.CO], 2024. See p. 13.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Eric Weisstein, MathWorld: Faulhaber's Formula
- Wikipedia, Faulhaber's formula
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
Crossrefs
Programs
-
Haskell
a000538 n = (3 * n * (n + 1) - 1) * (2 * n + 1) * (n + 1) * n `div` 30 -- Reinhard Zumkeller, Nov 11 2012
-
Magma
[n*(1+n)*(1+2*n)*(-1+3*n+3*n^2)/30: n in [0..35]]; // Vincenzo Librandi, Apr 04 2015
-
Maple
A000538 := n-> n*(n+1)*(2*n+1)*(3*n^2+3*n-1)/30;
-
Mathematica
Accumulate[Range[0,40]^4] (* Harvey P. Dale, Jan 13 2011 *) CoefficientList[Series[x (1 + 11 x + 11 x^2 + x^3)/(1 - x)^6, {x, 0, 40}], x] (* Vincenzo Librandi, Dec 07 2015 *) LinearRecurrence[{6, -15, 20, -15, 6, -1}, {0, 1, 17, 98, 354, 979}, 35] (* Jean-François Alcover, Feb 09 2016 *) Table[x^5/5+x^4/2+x^3/3-x/30,{x,40}] (* Harvey P. Dale, Jun 06 2021 *)
-
Maxima
A000538(n):=n*(n+1)*(2*n+1)*(3*n^2+3*n-1)/30$ makelist(A000538(n),n,0,30); /* Martin Ettl, Nov 12 2012 */
-
PARI
a(n) = n*(1+n)*(1+2*n)*(-1+3*n+3*n^2)/30 \\ Charles R Greathouse IV, Nov 20 2012
-
PARI
concat(0, Vec(x*(1+11*x+11*x^2+x^3)/(1-x)^6 + O(x^100))) \\ Altug Alkan, Dec 07 2015
-
Python
A000538_list, m = [0], [24, -36, 14, -1, 0, 0] for _ in range(10**2): for i in range(5): m[i+1] += m[i] A000538_list.append(m[-1]) # Chai Wah Wu, Nov 05 2014
-
Python
def A000538(n): return n*(n**2*(n*(6*n+15)+10)-1)//30 # Chai Wah Wu, Oct 03 2024
-
Sage
[bernoulli_polynomial(n,5)/5 for n in range(1, 35)] # Zerinvary Lajos, May 17 2009
Formula
a(n) = n*(1+n)*(1+2*n)*(-1+3*n+3*n^2)/30.
The preceding formula is due to al-Kachi (1394-1437). - Juri-Stepan Gerasimov, Jul 12 2009
G.f.: x*(x+1)*(1+10*x+x^2)/(1-x)^6. Simon Plouffe in his 1992 dissertation. More generally, the o.g.f. for Sum_{k=0..n} k^m is x*E(m, x)/(1-x)^(m+2), where E(m, x) is the Eulerian polynomial of degree m (cf. A008292). The e.g.f. for these o.g.f.s is: x/(1-x)^2*(exp(y/(1-x))-exp(x*y/(1-x)))/(exp(x*y/(1-x))-x*exp(y/(1-x))). - Vladeta Jovovic, May 08 2002
a(n) = Sum_{i = 1..n} J_4(i)*floor(n/i), where J_4 is A059377. - Enrique Pérez Herrero, Feb 26 2012
a(n) = 5*a(n-1) - 10* a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) + 24. - Ant King, Sep 23 2013
a(n) = -Sum_{j=1..4} j*Stirling1(n+1,n+1-j)*Stirling2(n+4-j,n). - Mircea Merca, Jan 25 2014
Sum_{n>=1} (-1)^(n+1)/a(n) = -30*(4 + 3/cos(sqrt(7/3)*Pi/2))*Pi/7. - Vaclav Kotesovec, Feb 13 2015
a(n) = (n + 1)*(n + 1/2)*n*(n + 1/2 + sqrt(7/12))*(n + 1/2 - sqrt(7/12))/5, see the Graham et al. reference, p. 275. - Wolfdieter Lang, Apr 02 2015
Extensions
The general V. Jovovic formula has been slightly changed after his approval by Wolfdieter Lang, Nov 03 2011
Comments