A254647
Fourth partial sums of eighth powers (A001016).
Original entry on oeis.org
1, 260, 7595, 94360, 723534, 4037712, 17944290, 67127880, 219319815, 642251428, 1718012933, 4258676240, 9892043980, 21721707840, 45414150132, 90930820464, 175208925885, 326205634020, 588861675535, 1033717781096, 1769137540730, 2958360418000, 4842936861750, 7774492635000
Offset: 1
The eighth powers: 1, 256, 6561, 65536, 390625, ... (A001016)
First partial sums: 1, 257, 6818, 72354, 462979, ... (A000542)
Second partial sums: 1, 258, 7076, 79430, 542409, ... (A253636)
Third partial sums: 1, 259, 7335, 86765, 629174, ... (A254642)
Fourth partial sums: 1, 260, 7595, 94360, 723534, ... (this sequence)
- Luciano Ancora, Table of n, a(n) for n = 1..1000
- Luciano Ancora, Partial sums of m-th powers with Faulhaber polynomials
- Luciano Ancora, Pascal’s triangle and recurrence relations for partial sums of m-th powers
- Index entries for linear recurrences with constant coefficients, signature (13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1).
-
List([1..30], n-> Binomial(n+4,5)*(n+2)*((n+2)^2-3)*(2*(n+2)^4 -28*(n+2)^2 +101)/198); # G. C. Greubel, Aug 28 2019
-
[Binomial(n+4,5)*(n+2)*((n+2)^2-3)*(2*(n+2)^4 -28*(n+2)^2 +101)/198: n in [1..30]]; // G. C. Greubel, Aug 28 2019
-
seq(binomial(n+4,5)*(n+2)*((n+2)^2-3)*(2*(n+2)^4 -28*(n+2)^2 +101)/198, n=1..30); # G. C. Greubel, Aug 28 2019
-
Table[n(1+n)(2+n)^2(3+n)(4+n)(1+4n+n^2)(21 -48n +20n^2 +16n^3 +2n^4 )/23760, {n,20}] (* or *)
Accumulate[Accumulate[Accumulate[Accumulate[Range[20]^8]]]] (* or *)
CoefficientList[Series[(1 +247x +4293x^2 +15619x^3 +15619x^4 +4293x^5 + 247x^6 +x^7)/(1-x)^13, {x,0,19}], x]
-
a(n)=n*(1+n)*(2+n)^2*(3+n)*(4+n)*(1+4*n+n^2)*(21-48*n+20*n^2 +16*n^3+2*n^4)/23760 \\ Charles R Greathouse IV, Sep 08 2015
-
vector(30, n, m=n+2; binomial(m+2,5)*m*(m^2-3)*(2*m^4-28*m^2 +101)/198)
-
[binomial(n+4,5)*(n+2)*((n+2)^2-3)*(2*(n+2)^4 -28*(n+2)^2 +101)/198 for n in (1..30)] # G. C. Greubel, Aug 28 2019
A253636
Second partial sums of eighth powers (A001016).
Original entry on oeis.org
1, 258, 7076, 79430, 542409, 2685004, 10592400, 35277012, 103008345, 270739678, 652829892, 1464901802, 3092704433, 6196296120, 11862778432, 21824228040, 38761435089, 66718602714, 111659333380, 182200064046, 290563654073, 453803117636, 695353566480, 1046979329500
Offset: 1
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Luciano Ancora, Recurrence relation for the second partial sums of m-th powers
- Luciano Ancora, Second partial sums of the m-th powers
- Feihu Liu, Guoce Xin, and Chen Zhang, Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS, arXiv:2412.18744 [math.CO], 2024. See p. 13.
- Index entries for linear recurrences with constant coefficients, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).
-
List([1..30], n-> n*(n+1)^2*(n+2)*(2*n^6 +12*n^5 +17*n^4 -12*n^3 -19*n^2 +18*n -3)/180); # G. C. Greubel, Aug 28 2019
-
[n*(n+1)^2*(n+2)*(2*n^6+12*n^5+17*n^4-12*n^3-19*n^2+18*n-3)/180: n in [1..25]]; // Bruno Berselli, Jan 08 2015
-
seq(n*(n+1)^2*(n+2)*(2*n^6 +12*n^5 +17*n^4 -12*n^3 -19*n^2 +18*n -3))/180, n=1..30); # G. C. Greubel, Aug 28 2019
-
Table[n(n+1)^2(n+2)(2n^6 +12n^5 +17n^4 -12n^3 -19n^2 +18n -3)/180, {n,30}] (* Bruno Berselli, Jan 08 2015 *)
Nest[Accumulate,Range[30]^8,2] (* or *) LinearRecurrence[{11,-55,165,-330,462,-462,330,-165,55,-11,1},{1,258,7076,79430,542409,2685004,10592400, 35277012, 103008345,270739678,652829892},30] (* Harvey P. Dale, Jul 02 2017 *)
-
a(n)=(2*n^10+20*n^9+75*n^8+120*n^7+42*n^6-84*n^5-50*n^4+40*n^3+21*n^2-6*n)/180 \\ Charles R Greathouse IV, Sep 08 2015
-
[(2*n^10+20*n^9+75*n^8+120*n^7+42*n^6-84*n^5-50*n^4+40*n^3+21*n^2-6*n)/180 for n in [1..24]] # Tom Edgar, Jan 07 2015
A254642
Third partial sums of eighth powers (A001016).
Original entry on oeis.org
1, 259, 7335, 86765, 629174, 3314178, 13906578, 49183590, 152191935, 422931613, 1075761505, 2540663307, 5633367740, 11829663860, 23692442292, 45516670332, 84278105421, 150996708135, 262656041515, 444856105561, 735419759634, 1189222877270
Offset: 1
First differences: 1, 255, 6305, 58975, 325089, ...(A022524)
--------------------------------------------------------------------
The eighth powers: 1, 256, 6561, 65536, 390625, ...(A001016)
--------------------------------------------------------------------
First partial sums: 1, 257, 6818, 72354, 462979, ...(A000542)
Second partial sums: 1, 258, 7076, 79430, 542409, ...(A253636)
Third partial sums: 1, 259, 7335, 86765, 629174, ...(this sequence)
- Luciano Ancora, Table of n, a(n) for n = 1..1000
- Luciano Ancora, Partial sums of m-th powers with Faulhaber polynomials
- Luciano Ancora, Pascal’s triangle and recurrence relations for partial sums of m-th powers
- Index entries for linear recurrences with constant coefficients, signature (12,-66,220,-495,792,-924,792,-495,220,-66,12,-1).
-
Table[n (1 + n) (2 + n) (3 + n) (3 + 2 n) (1 + 36 n - 69 n^2 + 45 n^4 + 18 n^5 + 2 n^6)/3960, {n, 22}]
Accumulate[Accumulate[Accumulate[Range[22]^8]]]
CoefficientList[Series[(1 + 247 x + 4293 x^2 + 15619 x^3 + 15619 x^4 + 4293 x^5 + 247 x^6 + x^7)/(- 1 + x)^12, {x, 0, 22}], x]
-
a(n)=n*(1+n)*(2+n)*(3+n)*(3+2*n)*(1+36*n-69*n^2+45*n^4+18*n^5+2*n^6)/3960 \\ Charles R Greathouse IV, Oct 07 2015
A255178
Second differences of eighth powers (A001016).
Original entry on oeis.org
1, 254, 6050, 52670, 266114, 963902, 2796194, 6927230, 15257090, 30683774, 57405602, 101263934, 170126210, 274309310, 427043234, 644975102, 948713474, 1363412990, 1919399330, 2652834494, 3606422402, 4830154814, 6382097570, 8329217150, 10748247554
Offset: 0
Second differences: 1, 254, 6050, 52670, 266114, ... (this sequence)
First differences: 1, 255, 6305, 58975, 325089, ... (A022524)
----------------------------------------------------------------------
The eighth powers: 1, 256, 6561, 65536, 390625, ... (A001016)
----------------------------------------------------------------------
First partial sums: 1, 257, 6818, 72354, 462979, ... (A000542)
Second partial sums: 1, 258, 7076, 79430, 542409, ... (A253636)
Third partial sums: 1, 259, 7335, 86765, 629174, ... (A254642)
Fourth partial sums: 1, 260, 7595, 94360, 723534, ... (A254647)
- Luciano Ancora, Table of n, a(n) for n = 0..1000
- Luciano Ancora, Sums of powers of positive integers and their recurrence relations, section 0.5.
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
-
[n eq 0 select 1 else 2*(28*n^6+70*n^4+28*n^2+1): n in [0..30]]; // Vincenzo Librandi, Mar 12 2015
-
Join[{1}, Table[2 (28 n^6 + 70 n^4 + 28 n^2 + 1), {n, 1, 30}]]
Join[{1},Differences[Range[0,30]^8,2]] (* Harvey P. Dale, Aug 26 2024 *)
A255182
Third differences of eighth powers (A001016).
Original entry on oeis.org
1, 253, 5796, 46620, 213444, 697788, 1832292, 4131036, 8329860, 15426684, 26721828, 43858332, 68862276, 104183100, 152733924, 217931868, 303738372, 414699516, 555986340, 733435164, 953587908, 1223732412, 1551942756, 1947119580, 2419030404, 2978349948
Offset: 0
Third differences: 1, 253, 5796, 46620, 213444, ... (this sequence)
Second differences: 1, 254, 6050, 52670, 266114, ... (A255178)
First differences: 1, 255, 6305, 58975, 325089, ... (A022524)
---------------------------------------------------------------------
The seventh powers: 1, 253, 5796, 46620, 213444, ... (A001016)
---------------------------------------------------------------------
-
[1,253] cat [84*(2*n-1)*(2*n^4-4*n^3+8*n^2-6*n+3): n in [2..30]]; // Vincenzo Librandi, Mar 18 2015
-
Join[{1, 253}, Table[84 (2 n - 1) (2 n^4 - 4 n^3 + 8 n^2 - 6 n + 3), {n, 2, 30}]]
A279641
Exponential transform of the eighth powers A001016.
Original entry on oeis.org
1, 1, 257, 7330, 289925, 18565676, 1042651237, 69221777920, 5270005429705, 415374654294352, 35626036180630121, 3293064510986584544, 320276195119275204493, 32969303384902657225792, 3579970600334581051222093, 406942001917387287570455296
Offset: 0
-
a:= proc(n) option remember; `if`(n=0, 1,
add(binomial(n-1, j-1)*j^8*a(n-j), j=1..n))
end:
seq(a(n), n=0..25);
A003381
Numbers that are the sum of 3 nonzero 8th powers.
Original entry on oeis.org
3, 258, 513, 768, 6563, 6818, 7073, 13123, 13378, 19683, 65538, 65793, 66048, 72098, 72353, 78658, 131073, 131328, 137633, 196608, 390627, 390882, 391137, 397187, 397442, 403747, 456162, 456417, 462722, 521697, 781251, 781506, 787811, 846786
Offset: 1
-
A003381 := proc(nmax::integer)
local xyzmax, ins, x,x8,y,y8,z,z8 ;
xyzmax := ceil(root[8](nmax/3)) ;
a := {} ;
for x from 1 to xyzmax do
x8 := x^8 ;
if 3*x8 > nmax then
break;
end if;
for y from x do
y8 := y^8 ;
if x8+2*y8 > nmax then
break;
end if;
for z from y do
z8 := z^8 ;
if x8+y8+z8 > nmax then
break;
end if;
if x8+y8+z8 <= nmax then
a := a union {x8+y8+z8} ;
end if;
end do:
end do:
end do:
sort(convert(a,list)) ;
end proc:
nmax := 6755626171875 ;
L:= A003381(nmax) ;
LISTTOBFILE(L,"b003381.txt",1) ; # R. J. Mathar, Aug 01 2020
-
kmax = 4*10^12;
m = kmax^(1/8) // Ceiling;
Table[k = x^8 + y^8 + z^8; If[k <= kmax, k, Nothing], {x, 1, m}, {y, x, m}, {z, y, m}] // Flatten // Union (* Jean-François Alcover, May 02 2023 *)
A003389
Numbers that are the sum of 11 positive 8th powers.
Original entry on oeis.org
11, 266, 521, 776, 1031, 1286, 1541, 1796, 2051, 2306, 2561, 2816, 6571, 6826, 7081, 7336, 7591, 7846, 8101, 8356, 8611, 8866, 9121, 13131, 13386, 13641, 13896, 14151, 14406, 14661, 14916, 15171, 15426, 19691, 19946, 20201, 20456, 20711, 20966, 21221, 21476, 21731, 26251
Offset: 1
From _David A. Corneth_, Aug 03 2020: (Start)
2488200 is in the sequence as 2488200 = 2^8 + 3^8 + 3^8 + 4^8 + 4^8 + 5^8 + 5^8 + 5^8 + 5^8 + 5^8 + 5^8.
3418281 is in the sequence as 3418281 = 3^8 + 3^8 + 3^8 + 3^8 + 3^8 + 3^8 + 3^8 + 3^8 + 3^8 + 6^8 + 6^8.
5249412 is in the sequence as 5249412 = 4^8 + 4^8 + 4^8 + 4^8 + 4^8 + 5^8 + 5^8 + 5^8 + 5^8 + 6^8 + 6^8. (End)
A003382
Numbers that are the sum of 4 nonzero 8th powers.
Original entry on oeis.org
4, 259, 514, 769, 1024, 6564, 6819, 7074, 7329, 13124, 13379, 13634, 19684, 19939, 26244, 65539, 65794, 66049, 66304, 72099, 72354, 72609, 78659, 78914, 85219, 131074, 131329, 131584, 137634, 137889, 144194, 196609, 196864, 203169, 262144
Offset: 1
From _David A. Corneth_, Aug 01 2020: (Start)
1246103043 is in the sequence as 1246103043 = 1^8 + 5^8 + 12^8 + 13^8.
4194358628 is in the sequence as 4194358628 = 3^8 + 13^8 + 13^8 + 15^8.
5148323267 is in the sequence as 5148323267 = 7^8 + 8^8 + 15^8 + 15^8. (End)
A###### (x, y): Numbers that are the form of x nonzero y-th powers.
Cf.
A000404 (2, 2),
A000408 (3, 2),
A000414 (4, 2),
A003072 (3, 3),
A003325 (3, 2),
A003327 (4, 3),
A003328 (5, 3),
A003329 (6, 3),
A003330 (7, 3),
A003331 (8, 3),
A003332 (9, 3),
A003333 (10, 3),
A003334 (11, 3),
A003335 (12, 3),
A003336 (2, 4),
A003337 (3, 4),
A003338 (4, 4),
A003339 (5, 4),
A003340 (6, 4),
A003341 (7, 4),
A003342 (8, 4),
A003343 (9, 4),
A003344 (10, 4),
A003345 (11, 4),
A003346 (12, 4),
A003347 (2, 5),
A003348 (3, 5),
A003349 (4, 5),
A003350 (5, 5),
A003351 (6, 5),
A003352 (7, 5),
A003353 (8, 5),
A003354 (9, 5),
A003355 (10, 5),
A003356 (11, 5),
A003357 (12, 5),
A003358 (2, 6),
A003359 (3, 6),
A003360 (4, 6),
A003361 (5, 6),
A003362 (6, 6),
A003363 (7, 6),
A003364 (8, 6),
A003365 (9, 6),
A003366 (10, 6),
A003367 (11, 6),
A003368 (12, 6),
A003369 (2, 7),
A003370 (3, 7),
A003371 (4, 7),
A003372 (5, 7),
A003373 (6, 7),
A003374 (7, 7),
A003375 (8, 7),
A003376 (9, 7),
A003377 (10, 7),
A003378 (11, 7),
A003379 (12, 7),
A003380 (2, 8),
A003381 (3, 8),
A003382 (4, 8),
A003383 (5, 8),
A003384 (6, 8),
A003385 (7, 8),
A003387 (9, 8),
A003388 (10, 8),
A003389 (11, 8),
A003390 (12, 8),
A003391 (2, 9),
A003392 (3, 9),
A003393 (4, 9),
A003394 (5, 9),
A003395 (6, 9),
A003396 (7, 9),
A003397 (8, 9),
A003398 (9, 9),
A003399 (10, 9),
A004800 (11, 9),
A004801 (12, 9),
A004802 (2, 10),
A004803 (3, 10),
A004804 (4, 10),
A004805 (5, 10),
A004806 (6, 10),
A004807 (7, 10),
A004808 (8, 10),
A004809 (9, 10),
A004810 (10, 10),
A004811 (11, 10),
A004812 (12, 10),
A004813 (2, 11),
A004814 (3, 11),
A004815 (4, 11),
A004816 (5, 11),
A004817 (6, 11),
A004818 (7, 11),
A004819 (8, 11),
A004820 (9, 11),
A004821 (10, 11),
A004822 (11, 11),
A004823 (12, 11),
A047700 (5, 2).
-
A003382 := proc(nmax::integer)
local a, x,x8,y,y8,z,z8,u,u8 ;
a := {} ;
for x from 1 do
x8 := x^8 ;
if 4*x8 > nmax then
break;
end if;
for y from x do
y8 := y^8 ;
if x8+3*y8 > nmax then
break;
end if;
for z from y do
z8 := z^8 ;
if x8+y8+2*z8 > nmax then
break;
end if;
for u from z do
u8 := u^8 ;
if x8+y8+z8+u8 > nmax then
break;
end if;
if x8+y8+z8+u8 <= nmax then
a := a union {x8+y8+z8+u8} ;
end if;
end do:
end do:
end do:
end do:
sort(convert(a,list)) ;
end proc:
nmax := 102400000000 ;
L:= A003382(nmax) ;
LISTTOBFILE(L,"b003382.txt",1) ; # R. J. Mathar, Aug 01 2020
-
M = 102400000000;
m = M^(1/8) // Ceiling;
Table[s = a^8+b^8+c^8+d^8; If[s>M, Nothing, s], {a, m}, {b, m}, {c, m}, {d, m}] // Flatten // Union (* Jean-François Alcover, Dec 01 2020 *)
A003383
Numbers that are the sum of 5 nonzero 8th powers.
Original entry on oeis.org
5, 260, 515, 770, 1025, 1280, 6565, 6820, 7075, 7330, 7585, 13125, 13380, 13635, 13890, 19685, 19940, 20195, 26245, 26500, 32805, 65540, 65795, 66050, 66305, 66560, 72100, 72355, 72610, 72865, 78660, 78915, 79170, 85220, 85475, 91780, 131075
Offset: 1
From _David A. Corneth_, Aug 01 2020: (Start)
100131584 is in the sequence as 100131584 = 2^8 + 2^8 + 4^8 + 4^8 + 10^8.
320123684 is in the sequence as 320123684 = 1^8 + 1^8 + 7^8 + 10^8 + 11^8.
750105634 is in the sequence as 750105634 = 2^8 + 7^8 + 10^8 + 11^8 + 12^8. (End)
A###### (x, y): Numbers that are the form of x nonzero y-th powers.
Cf.
A000404 (2, 2),
A000408 (3, 2),
A000414 (4, 2),
A003072 (3, 3),
A003325 (3, 2),
A003327 (4, 3),
A003328 (5, 3),
A003329 (6, 3),
A003330 (7, 3),
A003331 (8, 3),
A003332 (9, 3),
A003333 (10, 3),
A003334 (11, 3),
A003335 (12, 3),
A003336 (2, 4),
A003337 (3, 4),
A003338 (4, 4),
A003339 (5, 4),
A003340 (6, 4),
A003341 (7, 4),
A003342 (8, 4),
A003343 (9, 4),
A003344 (10, 4),
A003345 (11, 4),
A003346 (12, 4),
A003347 (2, 5),
A003348 (3, 5),
A003349 (4, 5),
A003350 (5, 5),
A003351 (6, 5),
A003352 (7, 5),
A003353 (8, 5),
A003354 (9, 5),
A003355 (10, 5),
A003356 (11, 5),
A003357 (12, 5),
A003358 (2, 6),
A003359 (3, 6),
A003360 (4, 6),
A003361 (5, 6),
A003362 (6, 6),
A003363 (7, 6),
A003364 (8, 6),
A003365 (9, 6),
A003366 (10, 6),
A003367 (11, 6),
A003368 (12, 6),
A003369 (2, 7),
A003370 (3, 7),
A003371 (4, 7),
A003372 (5, 7),
A003373 (6, 7),
A003374 (7, 7),
A003375 (8, 7),
A003376 (9, 7),
A003377 (10, 7),
A003378 (11, 7),
A003379 (12, 7),
A003380 (2, 8),
A003381 (3, 8),
A003382 (4, 8),
A003383 (5, 8),
A003384 (6, 8),
A003385 (7, 8),
A003387 (9, 8),
A003388 (10, 8),
A003389 (11, 8),
A003390 (12, 8),
A003391 (2, 9),
A003392 (3, 9),
A003393 (4, 9),
A003394 (5, 9),
A003395 (6, 9),
A003396 (7, 9),
A003397 (8, 9),
A003398 (9, 9),
A003399 (10, 9),
A004800 (11, 9),
A004801 (12, 9),
A004802 (2, 10),
A004803 (3, 10),
A004804 (4, 10),
A004805 (5, 10),
A004806 (6, 10),
A004807 (7, 10),
A004808 (8, 10),
A004809 (9, 10),
A004810 (10, 10),
A004811 (11, 10),
A004812 (12, 10),
A004813 (2, 11),
A004814 (3, 11),
A004815 (4, 11),
A004816 (5, 11),
A004817 (6, 11),
A004818 (7, 11),
A004819 (8, 11),
A004820 (9, 11),
A004821 (10, 11),
A004822 (11, 11),
A004823 (12, 11),
A047700 (5, 2).
-
A003383 := proc(nmax::integer)
local a, x,x8,y,y8,z,z8,u,u8,v,v8 ;
a := {} ;
for x from 1 do
x8 := x^8 ;
if 5*x8 > nmax then
break;
end if;
for y from x do
y8 := y^8 ;
if x8+4*y8 > nmax then
break;
end if;
for z from y do
z8 := z^8 ;
if x8+y8+3*z8 > nmax then
break;
end if;
for u from z do
u8 := u^8 ;
if x8+y8+z8+2*u8 > nmax then
break;
end if;
for v from u do
v8 := v^8 ;
if x8+y8+z8+u8+v8 > nmax then
break;
end if;
if x8+y8+z8+u8+v8 <= nmax then
a := a union {x8+y8+z8+u8+v8} ;
end if;
end do:
end do:
end do:
end do:
end do:
sort(convert(a,list)) ;
end proc:
nmax := 500000000 ; ;
L:= A003383(nmax) ;
LISTTOBFILE(L,"b003383.txt",1) ; # R. J. Mathar, Aug 01 2020
-
M = 3784086305;
m = M^(1/8) // Ceiling;
Table[s = a^8+b^8+c^8+d^8+e^8; If[s>M, Nothing, s], {a, m}, {b, m}, {c, m}, {d, m}, {e, m}] // Flatten // Union (* Jean-François Alcover, Dec 01 2020 *)
Showing 1-10 of 60 results.
Comments