cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A239672 Product_{i=1..n} J_6(i) where J_6(i) = A069091(i).

Original entry on oeis.org

1, 63, 45864, 184923648, 2889247076352, 132512427909808128, 15589822118733106642944, 4022922418094840702998413312, 2135013202351949099169693925638144, 2101519115233451721701919767332732796928, 3722967203782973732098252983015976113725767680
Offset: 1

Views

Author

Tom Edgar, Mar 23 2014

Keywords

Comments

This is the generalized factorial for A069091.
a(n) is also the determinant of the symmetric n X n matrix M defined by M(i,j) = gcd(i,j)^6 for 1 <= i,j <= n.

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 203, #17.

Crossrefs

Programs

  • Sage
    q=15 # change q for more terms
    J6=[i^6*prod([1-1/p^6 for p in prime_divisors(i)]) for i in [1..q]]
    [prod(J6[0:i+1]) for i in [0..q-1]]

A059376 Jordan function J_3(n).

Original entry on oeis.org

1, 7, 26, 56, 124, 182, 342, 448, 702, 868, 1330, 1456, 2196, 2394, 3224, 3584, 4912, 4914, 6858, 6944, 8892, 9310, 12166, 11648, 15500, 15372, 18954, 19152, 24388, 22568, 29790, 28672, 34580, 34384, 42408, 39312, 50652, 48006, 57096
Offset: 1

Views

Author

N. J. A. Sloane, Jan 28 2001

Keywords

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 199, #3.
  • R. Sivaramakrishnan, "The many facets of Euler's totient. II. Generalizations and analogues", Nieuw Arch. Wisk. (4) 8 (1990), no. 2, 169-187.

Crossrefs

See A059379 and A059380 (triangle of values of J_k(n)), A000010 (J_1), A007434 (J_2), A059377 (J_4), A059378 (J_5), A069091 - A069095 (J_6 through J_10).

Programs

  • Maple
    J := proc(n,k) local i,p,t1,t2; t1 := n^k; for p from 1 to n do if isprime(p) and n mod p = 0 then t1 := t1*(1-p^(-k)); fi; od; t1; end; # (with k = 3)
    A059376 := proc(n)
        add(d^3*numtheory[mobius](n/d),d=numtheory[divisors](n)) ;
    end proc: # R. J. Mathar, Nov 03 2015
  • Mathematica
    JordanJ[n_, k_: 1] := DivisorSum[n, #^k*MoebiusMu[n/#] &]; f[n_] := JordanJ[n, 3]; Array[f, 39]
    f[p_, e_] := p^(3*e) - p^(3*(e-1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 12 2020 *)
  • PARI
    for(n=1,120,print1(sumdiv(n,d,d^3*moebius(n/d)),","))
    
  • PARI
    for (n = 1, 1000, write("b059376.txt", n, " ", sumdiv(n, d, d^3*moebius(n/d))); ) \\ Harry J. Smith, Jun 26 2009
    
  • PARI
    seq(n) = dirmul(vector(n,k,k^3), vector(n,k,moebius(k)));
    seq(39)  \\ Gheorghe Coserea, May 11 2016
    
  • Python
    from math import prod
    from sympy import factorint
    def A059376(n): return prod(p**(3*(e-1))*(p**3-1) for p, e in factorint(n).items()) # Chai Wah Wu, Jan 29 2024

Formula

Multiplicative with a(p^e) = p^(3e) - p^(3e-3). - Vladeta Jovovic, Jul 26 2001
a(n) = Sum_{d|n} d^3*mu(n/d). - Benoit Cloitre, Apr 05 2002
Dirichlet generating function: zeta(s-3)/zeta(s). - Franklin T. Adams-Watters, Sep 11 2005
A063453(n) divides a(n). - R. J. Mathar, Mar 30 2011
a(n) = Sum_{k=1..n} gcd(k,n)^3 * cos(2*Pi*k/n). - Enrique Pérez Herrero, Jan 18 2013
a(n) = n^3*Product_{distinct primes p dividing n} (1-1/p^3). - Tom Edgar, Jan 09 2015
G.f.: Sum_{n>=1} a(n)*x^n/(1 - x^n) = x*(1 + 4*x + x^2)/(1 - x)^4. - Ilya Gutkovskiy, Apr 25 2017
Sum_{d|n} a(d) = n^3. - Werner Schulte, Jan 12 2018
Sum_{k=1..n} a(k) ~ 45*n^4 / (2*Pi^4). - Vaclav Kotesovec, Feb 07 2019
From Amiram Eldar, Oct 12 2020: (Start)
lim_{n->oo} (1/n) * Sum_{k=1..n} a(k)/k^3 = 1/zeta(4) (A215267).
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + p^3/(p^3-1)^2) = 1.2253556451... (End)
O.g.f.: Sum_{n >= 1} mu(n)*x^n*(1 + 4*x^n + x^(2*n))/(1 - x^n)^4 = x + 7*x^2 + 26*x^3 + 56*x^4 + 124*x^5 + .... - Peter Bala, Jan 31 2022
From Peter Bala, Jan 01 2024: (Start)
a(n) = Sum_{d divides n} d * J_2(d) * phi(n/d) = Sum_{d divides n} d^2 * phi(d) * J_2(n/d), where J_2(n) = A007434(n).
a(n) = Sum_{k = 1..n} gcd(k, n) * J_2(gcd(k, n)) = Sum_{1 <= j, k <= n} gcd(j, k, n)^2 * J_1(gcd(j, k, n)). (End)
a(n) = Sum_{1 <= i, j <= n, lcm(i, j) = n} phi(i)*J_2(j) = Sum_{1 <= i, j, k <= n, lcm(i, j, k) = n} phi(i)*phi(j)*phi(k), where J_2(n) = A007434(n). - Peter Bala, Jan 29 2024

A059377 Jordan function J_4(n).

Original entry on oeis.org

1, 15, 80, 240, 624, 1200, 2400, 3840, 6480, 9360, 14640, 19200, 28560, 36000, 49920, 61440, 83520, 97200, 130320, 149760, 192000, 219600, 279840, 307200, 390000, 428400, 524880, 576000, 707280, 748800, 923520, 983040, 1171200, 1252800, 1497600, 1555200, 1874160
Offset: 1

Views

Author

N. J. A. Sloane, Jan 28 2001

Keywords

Comments

This sequence is multiplicative. - Mitch Harris, Apr 19 2005
For n = 4 or n >= 6, a(n) is divisible by 240. - Jianing Song, Apr 06 2019

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 199, #3.
  • R. Sivaramakrishnan, "The many facets of Euler's totient. II. Generalizations and analogues", Nieuw Arch. Wisk. (4) 8 (1990), no. 2, 169-187.

Crossrefs

See A059379 and A059380 (triangle of values of J_k(n)), A000010 (J_1), A007434 (J_2), A059376 (J_3), A059378 (J_5), A069091 - A069095 (J_6 through J_10).
Cf. A013663.

Programs

  • Maple
    J := proc(n,k) local i,p,t1,t2; t1 := n^k; for p from 1 to n do if isprime(p) and n mod p = 0 then t1 := t1*(1-p^(-k)); fi; od; t1; end:
    seq(J(n,4), n=1..40);
  • Mathematica
    JordanJ[n_, k_: 1] := DivisorSum[n, #^k*MoebiusMu[n/#] &]; f[n_] := JordanJ[n, 4]; Array[f, 38]
    f[p_, e_] := p^(4*e) - p^(4*(e-1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 12 2020 *)
  • PARI
    for(n=1,100,print1(sumdiv(n,d,d^4*moebius(n/d)),","))
    
  • PARI
    a(n)=if(n<1,0,sumdiv(n,d,d^4*moebius(n/d)))
    
  • PARI
    a(n)=if(n<1,0,dirdiv(vector(n,k,k^4),vector(n,k,1))[n])
    
  • PARI
    { for (n = 1, 1000, write("b059377.txt", n, " ", sumdiv(n, d, d^4*moebius(n/d))); ) } \\ Harry J. Smith, Jun 26 2009

Formula

a(n) = Sum_{d|n} d^4*mu(n/d). - Benoit Cloitre, Apr 05 2002
Multiplicative with a(p^e) = p^(4e)-p^(4(e-1)).
Dirichlet generating function: zeta(s-4)/zeta(s). - Franklin T. Adams-Watters, Sep 11 2005
a(n) = Sum_{k=1..n} gcd(k,n)^4 * cos(2*Pi*k/n). - Enrique Pérez Herrero, Jan 18 2013
a(n) = n^4*Product_{distinct primes p dividing n} (1 - 1/p^4). - Tom Edgar, Jan 09 2015
G.f.: Sum_{n>=1} a(n)*x^n/(1 - x^n) = x*(1 + 11*x + 11*x^2 + x^3)/(1 - x)^5. - Ilya Gutkovskiy, Apr 25 2017
Sum_{k=1..n} a(k) ~ n^5 / (5*zeta(5)). - Vaclav Kotesovec, Feb 07 2019
From Amiram Eldar, Oct 12 2020: (Start)
lim_{n->oo} (1/n) * Sum_{k=1..n} a(k)/k^4 = 1/zeta(5).
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + p^4/(p^4-1)^2) = 1.0870036174... (End)
O.g.f.: Sum_{n >= 1} mu(n)*x^n*(1 + 11*x^n + 11*x^(2*n) + x^(3*n))/(1 - x^n)^5 = x + 15*x^2 + 80*x^3 + 240*x^4 + 624*x^5 + .... - Peter Bala, Jan 31 2022
From Peter Bala, Jan 01 2024: (Start)
a(n) = Sum_{d divides n} d * J_3(d) * J_1(n/d) = Sum_{d divides n} d^2 * J_2(d) * J_2(n/d) = Sum_{d divides n} d^3 * J_1(d) * J_3(n/d), where J_1(n) = phi(n) = A000010(n), J_2(n) = A007434(n) and J(3,n) = A059376(n).
a(n) = Sum_{k = 1..n} gcd(k, n) * J_3(gcd(k, n)) = Sum_{1 <= j, k <= n} gcd(j, k, n)^2 * J_2(gcd(j, k, n)) = Sum_{1 <= i, j, k <= n} gcd(i, j, k, n)^3 * J_1(gcd(i, j, k, n)). (End)
a(n) = Sum_{1 <= i, j <= n, lcm(i, j) = n} J_2(i) * J_2(j) = Sum_{1 <= i, j <= n, lcm(i, j) = n} phi(i) * J_3(j) (apply Lehmer, Theorem 1). - Peter Bala, Jan 29 2024

A000540 Sum of 6th powers: 0^6 + 1^6 + 2^6 + ... + n^6.

Original entry on oeis.org

0, 1, 65, 794, 4890, 20515, 67171, 184820, 446964, 978405, 1978405, 3749966, 6735950, 11562759, 19092295, 30482920, 47260136, 71397705, 105409929, 152455810, 216455810, 302221931, 415601835, 563637724, 754740700, 998881325, 1307797101, 1695217590
Offset: 0

Views

Author

Keywords

Comments

This sequence is related to A000539 by a(n) = n*A000539(n)-sum(A000539(i), i=0..n-1). - Bruno Berselli, Apr 26 2010

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 813.
  • J. L. Bailey, Jr., A table to facilitate the fitting of certain logistic curves, Annals Math. Stat., 2 (1931), 355-359.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 155.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd. ed., 1994, (2008), p. 289.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row 6 of array A103438.
Partial sums of A001014.

Programs

  • Haskell
    a000540 n = a000540_list !! n
    a000540_list = scanl1 (+) a001014_list -- Reinhard Zumkeller, Dec 04 2011
    
  • Magma
    [n*(n+1)*(2*n+1)*(3*n^4+6*n^3-3*n+1)/42: n in [0..30]]; // Vincenzo Librandi, Apr 04 2015
  • Maple
    a:=n->sum (j^6,j=0..n): seq(a(n),n=0..27); # Zerinvary Lajos, Jun 27 2007
    A000540:=(z+1)*(z**4+56*z**3+246*z**2+56*z+1)/(z-1)**8; # g.f. by Simon Plouffe in his 1992 dissertation, without the leading 0.
    A000540 := proc(n) n^7/7+n^6/2+n^5/2-n^3/6+n/42 ; end proc: # R. J. Mathar
  • Mathematica
    Accumulate[Range[0,30]^6] (* Harvey P. Dale, Jul 30 2009 *)
    LinearRecurrence[{8, -28, 56, -70, 56, -28, 8, -1}, {0, 1, 65, 794, 4890, 20515, 67171, 184820}, 31] (* Jean-François Alcover, Feb 09 2016 *)
  • PARI
    a(n)=n*(n+1)*(2*n+1)*(3*n^4+6*n^3-3*n+1)/42 \\ Edward Jiang, Sep 10 2014
    
  • PARI
    a(n)=sum(i=1, n, i^6); \\ Michel Marcus, Sep 11 2014
    
  • Python
    A000540_list, m = [0], [720, -1800, 1560, -540, 62, -1, 0, 0]
    for _ in range(10**2):
        for i in range(7):
            m[i+1] += m[i]
        A000540_list.append(m[-1]) # Chai Wah Wu, Nov 05 2014
    
  • Sage
    [bernoulli_polynomial(n,7)/7 for n in range(1, 29)]# Zerinvary Lajos, May 17 2009
    

Formula

a(n) = n*(n+1)*(2*n+1)*(3*n^4+6*n^3-3*n+1)/42.
a(n) = sqrt(Sum_{j=1..n} Sum_{i=1..n} (i*j)^6). - Alexander Adamchuk, Oct 26 2004
G.f.: A(x) = 3*x/7*G(0); with G(k) = 1 + 2/(k+1+(k+1)/(2*k^2 + 4*k + 1 + 2*(k+1)^2/(3*k + 2 - 9*x*(k+1)*(k+2)^4*(k+3)*(2*k+5)/(3*x*(k+2)^4*(k+3)*(2*k+5)+(k+1)*(2*k+3)/G(k+1))))); (continued fraction). - Sergei N. Gladkovskii, Dec 03 2011
G.f.: x*(1+x)*(x^4 + 56*x^3 + 246*x^2 + 56*x + 1) / (x-1)^8 . - R. J. Mathar, Aug 07 2012
a(n) = Sum_{i=1..n} J_6(i)*floor(n/i), where J_6 is A069091. - Enrique Pérez Herrero, Mar 09 2013
a(n) = 7*a(n-1) - 21* a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) + 720. - Ant King, Sep 24 2013
a(n) = -Sum_{j=1..6} j*Stirling1(n+1,n+1-j)*Stirling2(n+6-j,n). - Mircea Merca, Jan 25 2014
Sum_{n>=1} (-1)^(n+1)/a(n) = 84*Pi*(8*cos(sqrt((sqrt(93) + 9)/6)*Pi) + 15*cos(sqrt((sqrt(93) + 9)/6)*Pi/2) * cosh(sqrt((sqrt(93) - 9)/6)*Pi/2) + 8*cosh(sqrt((sqrt(93) - 9)/6)*Pi) - 7*sqrt(3)*sin(sqrt((sqrt(93) + 9)/6)*Pi/2) * sinh(sqrt((sqrt(93) - 9)/6)*Pi/2)) / (31*(cos(sqrt((sqrt(93) + 9)/6)*Pi) + cosh(sqrt((sqrt(93) - 9)/6)*Pi))) = 0.985708051237101247832970793342271511... . - Vaclav Kotesovec, Feb 13 2015
a(n) = (n + 1)*(n + 1/2)*n*(n + 1/2 + z)*(n + 1/2 - z)*(n + 1/2 + zbar)*(n + 1/2 - zbar)/7, with I^2 = -1 and z = 2^(-3/2)*3^(-1/4)*(sqrt(sqrt(31) + 3*sqrt(3)) + I*sqrt(sqrt(31) - 3*sqrt(3))), and zbar is the complex conjugate of z. See the Graham et al. reference, eq. (6.98), pp. 288-289 (with n -> n+1). (There was a typo in the first edition, which was corrected in the second edition.) - Wolfdieter Lang, Apr 03 2015
a(n+2) = 36*A086020(n+1) + 24*A005585(n+1) + A000330(n+2). - Yasser Arath Chavez Reyes, Apr 16 2024

A059378 Jordan function J_5(n).

Original entry on oeis.org

1, 31, 242, 992, 3124, 7502, 16806, 31744, 58806, 96844, 161050, 240064, 371292, 520986, 756008, 1015808, 1419856, 1822986, 2476098, 3099008, 4067052, 4992550, 6436342, 7682048, 9762500, 11510052, 14289858, 16671552, 20511148, 23436248, 28629150, 32505856
Offset: 1

Views

Author

N. J. A. Sloane, Jan 28 2001

Keywords

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 199, #3.
  • R. Sivaramakrishnan, "The many facets of Euler's totient. II. Generalizations and analogues", Nieuw Arch. Wisk. (4) 8 (1990), no. 2, 169-187.

Crossrefs

See A059379 and A059380 (triangle of values of J_k(n)), A000010 (J_1), A059376 (J_3), A059377 (J_4), A069091 - A069095 (J_6 through J_10).
Cf. A013664.

Programs

  • Maple
    J := proc(n,k) local i,p,t1,t2; t1 := n^k; for p from 1 to n do if isprime(p) and n mod p = 0 then t1 := t1*(1-p^(-k)); fi; od; t1; end; # (with k = 5)
  • Mathematica
    JordanJ[n_, k_] := DivisorSum[n, #^k*MoebiusMu[n/#] &]; f[n_] := JordanJ[n, 5]; Array[f, 30]
    f[p_, e_] := p^(5*e) - p^(5*(e-1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 12 2020 *)
  • PARI
    for(n=1,100,print1(sumdiv(n,d,d^5*moebius(n/d)),","))
    
  • PARI
    { for (n = 1, 1000, write("b059378.txt", n, " ", sumdiv(n, d, d^5*moebius(n/d))); ) } \\ Harry J. Smith, Jun 26 2009
    
  • Python
    from sympy import divisors, mobius
    def a(n):
        return sum(d**5 * mobius(n // d) for d in divisors(n))
    # Indranil Ghosh, Apr 26 2017

Formula

a(n) = Sum_{d|n} d^5*mu(n/d). - Benoit Cloitre, Apr 05 2002
Multiplicative with a(p^e) = p^(5e)-p^(5(e-1)).
Dirichlet generating function: zeta(s-5)/zeta(s). - Franklin T. Adams-Watters, Sep 11 2005
a(n) = n^5*Product_{distinct primes p dividing n} (1-1/p^5). - Tom Edgar, Jan 09 2015
G.f.: Sum_{n>=1} a(n)*x^n/(1 - x^n) = x*(1 + 26*x + 66*x^2 + 26*x^3 + x^4)/(1 - x)^6. - Ilya Gutkovskiy, Apr 25 2017
Sum_{k=1..n} a(k) ~ 315*n^6 / (2*Pi^6). - Vaclav Kotesovec, Feb 07 2019
From Amiram Eldar, Oct 12 2020: (Start)
Limit_{n->oo} (1/n) * Sum_{k=1..n} a(k)/k^5 = 1/zeta(6).
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + p^5/(p^5-1)^2) = 1.0379908060... (End)
O.g.f.: Sum_{n >= 1} mu(n)*x^n*(1 + 26*x^n + 66*x^(2*n) + 26*x^(3*n) + x^(4*n))/(1 - x^n)^6 = x + 31*x^2 + 242*x^3 + 992*x^4 + 3124*x^5 + .... - Peter Bala, Jan 31 2022
From Peter Bala, Jan 01 2024: (Start)
a(n) = Sum_{d divides n} d * J_4(d) * J_1(n/d) = Sum_{d divides n} d^2 * J_3(d) * J_2(n/d) = Sum_{d divides n} d^3 * J_2(d) * J_3(n/d) = Sum_{d divides n} d^4 * J_1(d) * J_4(n/d), where J_1(n) = phi(n) = A000010(n), J_2(n) = A007434(n), J(3,n) = A059376(n) and J_4(n) = A059377(n).
a(n) = Sum_{k = 1..n} gcd(k, n) * J_4(gcd(k, n)).
a(n) = Sum_{1 <= j, k <= n} gcd(j, k, n)^2 * J_3(gcd(j, k, n)). (End)
a(n) = Sum_{1 <= i, j <= n, lcm(i, j) = n} J_2(i) * J_3(j) = Sum_{1 <= i, j <= n, lcm(i, j) = n} phi(i) * J_4(j) (apply Lehmer, Theorem 1). - Peter Bala, Jan 30 2024

A065959 a(n) = n^3*Product_{distinct primes p dividing n} (1+1/p^3).

Original entry on oeis.org

1, 9, 28, 72, 126, 252, 344, 576, 756, 1134, 1332, 2016, 2198, 3096, 3528, 4608, 4914, 6804, 6860, 9072, 9632, 11988, 12168, 16128, 15750, 19782, 20412, 24768, 24390, 31752, 29792, 36864, 37296, 44226, 43344, 54432, 50654, 61740, 61544
Offset: 1

Views

Author

N. J. A. Sloane, Dec 08 2001

Keywords

Crossrefs

Sequences of the form n^k * Product_ {p|n, p prime} (1 + 1/p^k) for k=0..10: A034444 (k=0), A001615 (k=1), A065958 (k=2), this sequence (k=3), A065960 (k=4), A351300 (k=5), A351301 (k=6), A351302 (k=7), A351303 (k=8), A351304 (k=9), A351305 (k=10).

Programs

  • Mathematica
    JordanTotient[n_,k_:1] := DivisorSum[n, #^k * MoebiusMu[n/#] &]/;(n>0) && IntegerQ[n]; A065959[n_] := JordanTotient[n,6] / JordanTotient[n,3]; Array[A065959, 39] (* Enrique Pérez Herrero, Aug 22 2010 *)
    f[p_, e_] := p^(3*e) + p^(3*(e-1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 12 2020 *)
  • PARI
    for(n=1,100,print1(n^3*sumdiv(n,d,moebius(d)^2/d^3),","))
    
  • PARI
    a(n)=sumdiv(n,d,moebius(n/d)^2*d^3); \\ Joerg Arndt, Jul 06 2011

Formula

Multiplicative with a(p^e) = p^(3*e)+p^(3*e-3). - Vladeta Jovovic, Dec 09 2001
a(n) = n^3*Sum_{d|n} mu(d)^2/d^3. - Benoit Cloitre, Apr 07 2002
a(n) = Sum_{d|n} mu(n/d)^2*d^3. - Joerg Arndt, Jul 06 2011
a(n) = J_6(n)/J_3(n) = A069091(n)/A059376(n). - Enrique Pérez Herrero, Aug 22 2010
Dirichlet g.f.: zeta(s)*zeta(s-3)/zeta(2*s). Dirichlet convolution of A008966 and A000578. - R. J. Mathar, Apr 10 2011
G.f.: Sum_{k>=1} mu(k)^2*x^k*(1 + 4*x^k + x^(2*k))/(1 - x^k)^4. - Ilya Gutkovskiy, Oct 24 2018
From Vaclav Kotesovec, Sep 19 2020: (Start)
Sum_{k=1..n} a(k) ~ 105*n^4 / (4*Pi^4).
Sum_{k>=1} 1/a(k) = Product_{primes p} (1 + p^3/(p^6-1)) = 1.18370753651668075930203278269930233284040397061087910806697928843547863257... (End)

A069095 Jordan function J_10(n).

Original entry on oeis.org

1, 1023, 59048, 1047552, 9765624, 60406104, 282475248, 1072693248, 3486725352, 9990233352, 25937424600, 61855850496, 137858491848, 288972178704, 576640565952, 1098437885952, 2015993900448, 3566920035096, 6131066257800
Offset: 1

Views

Author

Benoit Cloitre, Apr 05 2002

Keywords

Comments

a(n) is divisible by 264 = (2^3)*3*11 = A006863(5), except for n = 1, 2, 3 or 11. See Lugo. - Peter Bala, Jan 13 2024

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 199, #3.

Crossrefs

Cf. A059379 and A059380 (triangle of values of J_k(n)), A000010 (J_1), A007434 (J-2), A059376 (J_3), A059377 (J_4), A059378 (J_5), A069091 - A069094 (J_6 through J_9).
Cf. A013669.

Programs

  • Maple
    f:= n -> n^10*mul(1-1/p^10, p=numtheory:-factorset(n)):
    map(f, [$1..30]); # Robert Israel, Jan 09 2015
  • Mathematica
    JordanJ[n_, k_] := DivisorSum[n, #^k*MoebiusMu[n/#] &]; f[n_] := JordanJ[n, 10]; Array[f, 21]
    f[p_, e_] := p^(10*e) - p^(10*(e-1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 12 2020 *)
  • PARI
    a(n) = sumdiv(n,d,d^10*moebius(n/d));

Formula

a(n) = Sum_{d|n} d^10*mu(n/d).
Multiplicative with a(p^e) = p^(10e)-p^(10(e-1)).
Dirichlet generating function: zeta(s-10)/zeta(s). - Ralf Stephan, Jul 04 2013
a(n) = n^10*Product_{distinct primes p dividing n} (1-1/p^10). - Tom Edgar, Jan 09 2015
Sum_{k=1..n} a(k) ~ n^11 / (11*zeta(11)). - Vaclav Kotesovec, Feb 07 2019
From Amiram Eldar, Oct 12 2020: (Start)
lim_{n->oo} (1/n) * Sum_{k=1..n} a(k)/k^10 = 1/zeta(11).
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + p^10/(p^10-1)^2) = 1.0009955309... (End)

A351246 a(n) = n^6 * Sum_{p|n, p prime} 1/p^6.

Original entry on oeis.org

0, 1, 1, 64, 1, 793, 1, 4096, 729, 15689, 1, 50752, 1, 117713, 16354, 262144, 1, 578097, 1, 1004096, 118378, 1771625, 1, 3248128, 15625, 4826873, 531441, 7533632, 1, 12437281, 1, 16777216, 1772290, 24137633, 133274, 36998208, 1, 47045945, 4827538, 64262144, 1, 93342313
Offset: 1

Views

Author

Wesley Ivan Hurt, Feb 05 2022

Keywords

Comments

Dirichlet convolution of A010051(n) and n^6. - Wesley Ivan Hurt, Jul 15 2025

Examples

			a(6) = 793; a(6) = 6^6 * Sum_{p|6, p prime} 1/p^6 = 46656 * (1/2^6 + 1/3^6) = 793.
		

Crossrefs

Sequences of the form n^k * Sum_{p|n, p prime} 1/p^k for k = 0..10: A001221 (k=0), A069359 (k=1), A322078 (k=2), A351242 (k=3), A351244 (k=4), A351245 (k=5), this sequence (k=6), A351247 (k=7), A351248 (k=8), A351249 (k=9), A351262 (k=10).

Programs

  • Mathematica
    Array[#^6*DivisorSum[#, 1/#^6 &, PrimeQ] &, 50] (* Wesley Ivan Hurt, Jul 15 2025 *)

Formula

a(A000040(n)) = 1.
a(n) = Sum_{d|n} A069091(d)*A001221(n/d). - Ridouane Oudra, Jul 14 2025
From Wesley Ivan Hurt, Jul 15 2025: (Start)
a(n) = Sum_{d|n} c(d) * (n/d)^6, where c = A010051.
a(p^k) = p^(6*k-6) for p prime and k>=1. (End)

A069093 Jordan function J_8(n).

Original entry on oeis.org

1, 255, 6560, 65280, 390624, 1672800, 5764800, 16711680, 43040160, 99609120, 214358880, 428236800, 815730720, 1470024000, 2562493440, 4278190080, 6975757440, 10975240800, 16983563040, 25499934720, 37817088000
Offset: 1

Views

Author

Benoit Cloitre, Apr 05 2002

Keywords

Comments

a(n) is divisible by 480 = (2^5)*3*5 = A006863(4), except for n = 1, 2, 3 and 5. See Lugo. - Peter Bala, Jan 13 2024

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 199, #3.

Crossrefs

Cf. A059379 and A059380 (triangle of values of J_k(n)), A000010 (J_1), A007434 (J_2), A059376 (J_3), A059377 (J_4), A059378 (J_5), A069091 - A069095 (J_6 through J_10)
Cf. A013667.

Programs

  • Maple
    with(numtheory): seq(add(d^8 * mobius(n/d), d in divisors(n)), n = 1..100); # Peter Bala, Jan 13 2024
  • Mathematica
    JordanJ[n_, k_] := DivisorSum[n, #^k*MoebiusMu[n/#] &]; f[n_] := JordanJ[n, 8]; Array[f, 25]
    f[p_, e_] := p^(8*e) - p^(8*(e-1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 12 2020 *)
  • PARI
    for(n=1,100,print1(sumdiv(n,d,d^8*moebius(n/d)),","))

Formula

a(n) = Sum_{d|n} d^8*mu(n/d).
Multiplicative with a(p^e) = p^(8e)-p^(8(e-1)).
Dirichlet generating function: zeta(s-8)/zeta(s). - Ralf Stephan, Jul 04 2013
a(n) = n^8*Product_{distinct primes p dividing n} (1-1/p^8). - Tom Edgar, Jan 09 2015
Sum_{k=1..n} a(k) ~ n^9 / (9*zeta(9)). - Vaclav Kotesovec, Feb 07 2019
From Amiram Eldar, Oct 12 2020: (Start)
Limit_{n->oo} (1/n) * Sum_{k=1..n} a(k)/k^8 = 1/zeta(9).
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + p^8/(p^8-1)^2) = 1.0040927606... (End)

A069092 Jordan function J_7(n).

Original entry on oeis.org

1, 127, 2186, 16256, 78124, 277622, 823542, 2080768, 4780782, 9921748, 19487170, 35535616, 62748516, 104589834, 170779064, 266338304, 410338672, 607159314, 893871738, 1269983744, 1800262812, 2474870590, 3404825446, 4548558848
Offset: 1

Views

Author

Benoit Cloitre, Apr 05 2002

Keywords

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 199, #3.

Crossrefs

Cf. A059379 and A059380 (triangle of values of J_k(n)), A000010 (J_1), A059376 (J_3), A059377 (J_4), A059378 (J_5).
Cf. A069091 (J_6), A069092 (J_7), A069093 (J_8), A069094 (J_9), A069095 (J_10). [Enrique Pérez Herrero, Nov 02 2010]
Cf. A013666.

Programs

  • Mathematica
    JordanTotient[n_, k_: 1] := DivisorSum[n, (#^k)*MoebiusMu[n/# ] &] /; (n > 0) && IntegerQ[n]
    A069092[n_] := JordanTotient[n, 7]; (* Enrique Pérez Herrero, Nov 02 2010 *)
    f[p_, e_] := p^(7*e) - p^(7*(e-1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 12 2020 *)
  • PARI
    for(n=1, 100, print1(sumdiv(n, d, d^7*moebius(n/d)), ", "))

Formula

a(n) = Sum_{d|n} d^7*mu(n/d).
Multiplicative with a(p^e) = p^(7e)-p^(7(e-1)).
Dirichlet generating function: zeta(s-7)/zeta(s). - Ralf Stephan, Jul 04 2013
a(n) = n^7*Product_{distinct primes p dividing n} (1-1/p^7). - Tom Edgar, Jan 09 2015
Sum_{k=1..n} a(k) ~ 4725*n^8 / (4*Pi^8). - Vaclav Kotesovec, Feb 07 2019
From Amiram Eldar, Oct 12 2020: (Start)
lim_{n->oo} (1/n) * Sum_{k=1..n} a(k)/k^7 = 1/zeta(8).
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + p^7/(p^7-1)^2) = 1.0084115178... (End)
O.g.f.: Sum_{n >= 1} mu(n)*A_7(x^n)/(1 - x^n)^8 = x + 127*x^2 + 2186*x^3 + 16256*x^4 + 78124*x^5 + ..., where A_7(x) = x + 120*x^2 + 1191*x^3 + 2416*x^4 + 1191*x^5 + 120*x^6 + x^7 is the 7th Eulerian polynomial. See A008292. - Peter Bala, Jan 31 2022
Showing 1-10 of 16 results. Next