cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 22 results. Next

A000010 Euler totient function phi(n): count numbers <= n and prime to n.

Original entry on oeis.org

1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10, 4, 12, 6, 8, 8, 16, 6, 18, 8, 12, 10, 22, 8, 20, 12, 18, 12, 28, 8, 30, 16, 20, 16, 24, 12, 36, 18, 24, 16, 40, 12, 42, 20, 24, 22, 46, 16, 42, 20, 32, 24, 52, 18, 40, 24, 36, 28, 58, 16, 60, 30, 36, 32, 48, 20, 66, 32, 44
Offset: 1

Views

Author

Keywords

Comments

Number of elements in a reduced residue system modulo n.
Degree of the n-th cyclotomic polynomial (cf. A013595). - Benoit Cloitre, Oct 12 2002
Number of distinct generators of a cyclic group of order n. Number of primitive n-th roots of unity. (A primitive n-th root x is such that x^k is not equal to 1 for k = 1, 2, ..., n - 1, but x^n = 1.) - Lekraj Beedassy, Mar 31 2005
Also number of complex Dirichlet characters modulo n; Sum_{k=1..n} a(k) is asymptotic to (3/Pi^2)*n^2. - Steven Finch, Feb 16 2006
a(n) is the highest degree of irreducible polynomial dividing 1 + x + x^2 + ... + x^(n-1) = (x^n - 1)/(x - 1). - Alexander Adamchuk, Sep 02 2006, corrected Sep 27 2006
a(p) = p - 1 for prime p. a(n) is even for n > 2. For n > 2, a(n)/2 = A023022(n) = number of partitions of n into 2 ordered relatively prime parts. - Alexander Adamchuk, Jan 25 2007
Number of automorphisms of the cyclic group of order n. - Benoit Jubin, Aug 09 2008
a(n+2) equals the number of palindromic Sturmian words of length n which are "bispecial", prefix or suffix of two Sturmian words of length n + 1. - Fred Lunnon, Sep 05 2010
Suppose that a and n are coprime positive integers, then by Euler's totient theorem, any factor of n divides a^phi(n) - 1. - Lei Zhou, Feb 28 2012
If m has k prime factors, (p_1, p_2, ..., p_k), then phi(m*n) = (Product_{i=1..k} phi (p_i*n))/phi(n)^(k-1). For example, phi(42*n) = phi(2*n)*phi(3*n)*phi(7*n)/phi(n)^2. - Gary Detlefs, Apr 21 2012
Sum_{n>=1} a(n)/n! = 1.954085357876006213144... This sum is referenced in Plouffe's inverter. - Alexander R. Povolotsky, Feb 02 2013 (see A336334. - Hugo Pfoertner, Jul 22 2020)
The order of the multiplicative group of units modulo n. - Michael Somos, Aug 27 2013
A strong divisibility sequence, that is, gcd(a(n), a(m)) = a(gcd(n, m)) for all positive integers n and m. - Michael Somos, Dec 30 2016
From Eric Desbiaux, Jan 01 2017: (Start)
a(n) equals the Ramanujan sum c_n(n) (last term on n-th row of triangle A054533).
a(n) equals the Jordan function J_1(n) (cf. A007434, A059376, A059377, which are the Jordan functions J_2, J_3, J_4, respectively). (End)
For n > 1, a(n) appears to be equal to the number of semi-meander solutions for n with top arches containing exactly 2 mountain ranges and exactly 2 arches of length 1. - Roger Ford, Oct 11 2017
a(n) is the minimum dimension of a lattice able to generate, via cut-and-project, the quasilattice whose diffraction pattern features n-fold rotational symmetry. The case n=15 is the first n > 1 in which the following simpler definition fails: "a(n) is the minimum dimension of a lattice with n-fold rotational symmetry". - Felix Flicker, Nov 08 2017
Number of cyclic Latin squares of order n with the first row in ascending order. - Eduard I. Vatutin, Nov 01 2020
a(n) is the number of rational numbers p/q >= 0 (in lowest terms) such that p + q = n. - Rémy Sigrist, Jan 17 2021
From Richard L. Ollerton, May 08 2021: (Start)
Formulas for the numerous OEIS entries involving Dirichlet convolution of a(n) and some sequence h(n) can be derived using the following (n >= 1):
Sum_{d|n} phi(d)*h(n/d) = Sum_{k=1..n} h(gcd(n,k)) [see P. H. van der Kamp link] = Sum_{d|n} h(d)*phi(n/d) = Sum_{k=1..n} h(n/gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)). Similarly,
Sum_{d|n} phi(d)*h(d) = Sum_{k=1..n} h(n/gcd(n,k)) = Sum_{k=1..n} h(gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)).
More generally,
Sum_{d|n} h(d) = Sum_{k=1..n} h(gcd(n,k))/phi(n/gcd(n,k)) = Sum_{k=1..n} h(n/gcd(n,k))/phi(n/gcd(n,k)).
In particular, for sequences involving the Möbius transform:
Sum_{d|n} mu(d)*h(n/d) = Sum_{k=1..n} h(gcd(n,k))*mu(n/gcd(n,k))/phi(n/gcd(n,k)) = Sum_{k=1..n} h(n/gcd(n,k))*mu(gcd(n,k))/phi(n/gcd(n,k)), where mu = A008683.
Use of gcd(n,k)*lcm(n,k) = n*k and phi(gcd(n,k))*phi(lcm(n,k)) = phi(n)*phi(k) provide further variations. (End)
From Richard L. Ollerton, Nov 07 2021: (Start)
Formulas for products corresponding to the sums above may found using the substitution h(n) = log(f(n)) where f(n) > 0 (for example, cf. formulas for the sum A018804 and product A067911 of gcd(n,k)):
Product_{d|n} f(n/d)^phi(d) = Product_{k=1..n} f(gcd(n,k)) = Product_{d|n} f(d)^phi(n/d) = Product_{k=1..n} f(n/gcd(n,k))^(phi(gcd(n,k))/phi(n/gcd(n,k))),
Product_{d|n} f(d)^phi(d) = Product_{k=1..n} f(n/gcd(n,k)) = Product_{k=1..n} f(gcd(n,k))^(phi(gcd(n,k))/phi(n/gcd(n,k))),
Product_{d|n} f(d) = Product_{k=1..n} f(gcd(n,k))^(1/phi(n/gcd(n,k))) = Product_{k=1..n} f(n/gcd(n,k))^(1/phi(n/gcd(n,k))),
Product_{d|n} f(n/d)^mu(d) = Product_{k=1..n} f(gcd(n,k))^(mu(n/gcd(n,k))/phi(n/gcd(n,k))) = Product_{k=1..n} f(n/gcd(n,k))^(mu(gcd(n,k))/phi(n/gcd(n,k))), where mu = A008683. (End)
a(n+1) is the number of binary words with exactly n distinct subsequences (when n > 0). - Radoslaw Zak, Nov 29 2021

Examples

			G.f. = x + x^2 + 2*x^3 + 2*x^4 + 4*x^5 + 2*x^6 + 6*x^7 + 4*x^8 + 6*x^9 + 4*x^10 + ...
a(8) = 4 with {1, 3, 5, 7} units modulo 8. a(10) = 4 with {1, 3, 7, 9} units modulo 10. - _Michael Somos_, Aug 27 2013
From _Eduard I. Vatutin_, Nov 01 2020: (Start)
The a(5)=4 cyclic Latin squares with the first row in ascending order are:
  0 1 2 3 4   0 1 2 3 4   0 1 2 3 4   0 1 2 3 4
  1 2 3 4 0   2 3 4 0 1   3 4 0 1 2   4 0 1 2 3
  2 3 4 0 1   4 0 1 2 3   1 2 3 4 0   3 4 0 1 2
  3 4 0 1 2   1 2 3 4 0   4 0 1 2 3   2 3 4 0 1
  4 0 1 2 3   3 4 0 1 2   2 3 4 0 1   1 2 3 4 0
(End)
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 24.
  • M. Baake and U. Grimm, Aperiodic Order Vol. 1: A Mathematical Invitation, Encyclopedia of Mathematics and its Applications 149, Cambridge University Press, 2013: see Tables 3.1 and 3.2.
  • Florian Cajori, A History of Mathematical Notations, Dover edition (2012), par. 409.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 193.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 154-156.
  • C. W. Curtis, Pioneers of Representation Theory ..., Amer. Math. Soc., 1999; see p. 3.
  • J.-M. De Koninck & A. Mercier, 1001 Problèmes en Théorie Classique des Nombres, Ellipses, Paris, 2004, Problème 529, pp. 71-257.
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 1, Chapter V.
  • S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 115-119.
  • Carl Friedrich Gauss, "Disquisitiones Arithmeticae", Yale University Press, 1965; see p. 21.
  • Ronald L. Graham, Donald E. Knuth and Oren Patashnik, Concrete Math., 2n-d ed.; Addison-Wesley, 1994, p. 137.
  • R. K. Guy, Unsolved Problems in Number Theory, Springer, 1st edition, 1981. See section B36.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, th. 60, 62, 63, 288, 323, 328, 330.
  • Peter Hilton and Jean Pedersen, A Mathematical Tapestry, Demonstrating the Beautiful Unity of Mathematics, Cambridge University Press, pages 261-264, the Coach theorem.
  • Jean-Marie Monier, Analyse, Exercices corrigés, 2ème année MP, Dunod, 1997, Exercice 3.2.21 pp. 281-294.
  • G. Pólya and G. Szegő, Problems and Theorems in Analysis, Springer-Verlag, New York, Heidelberg, Berlin, 2 vols., 1976, Vol. II, problem 71, p. 126.
  • Paulo Ribenboim, The New Book of Prime Number Records.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 28-33.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 162-167.

Crossrefs

Cf. A002088 (partial sums), A008683, A003434 (steps to reach 1), A007755, A049108, A002202 (values), A011755 (Sum k*phi(k)).
Cf. also A005277 (nontotient numbers). For inverse see A002181, A006511, A058277.
Jordan function J_k(n) is a generalization - see A059379 and A059380 (triangle of values of J_k(n)), this sequence (J_1), A007434 (J_2), A059376 (J_3), A059377 (J_4), A059378 (J_5).
Row sums of triangles A134540, A127448, A143239, A143353 and A143276.
Equals right and left borders of triangle A159937. - Gary W. Adamson, Apr 26 2009
Values for prime powers p^e: A006093 (e=1), A036689 (e=2), A135177 (e=3), A138403 (e=4), A138407 (e=5), A138412 (e=6).
Values for perfect powers n^e: A002618 (e=2), A053191 (e=3), A189393 (e=4), A238533 (e=5), A306411 (e=6), A239442 (e=7), A306412 (e=8), A239443 (e=9).
Cf. A076479.
Cf. A023900 (Dirichlet inverse of phi), A306633 (Dgf at s=3).

Programs

  • Axiom
    [eulerPhi(n) for n in 1..100]
    
  • Haskell
    a n = length (filter (==1) (map (gcd n) [1..n])) -- Allan C. Wechsler, Dec 29 2014
    
  • Julia
    # Computes the first N terms of the sequence.
    function A000010List(N)
        phi = [i for i in 1:N + 1]
        for i in 2:N + 1
            if phi[i] == i
                for j in i:i:N + 1
                    phi[j] -= div(phi[j], i)
        end end end
    return phi end
    println(A000010List(68))  # Peter Luschny, Sep 03 2023
  • Magma
    [ EulerPhi(n) : n in [1..100] ]; // Sergei Haller (sergei(AT)sergei-haller.de), Dec 21 2006
    
  • Maple
    with(numtheory): A000010 := phi; [ seq(phi(n), n=1..100) ]; # version 1
    with(numtheory): phi := proc(n) local i,t1,t2; t1 := ifactors(n)[2]; t2 := n*mul((1-1/t1[i][1]),i=1..nops(t1)); end; # version 2
    # Alternative without library function:
    A000010List := proc(N) local i, j, phi;
        phi := Array([seq(i, i = 1 .. N+1)]);
        for i from 2 to N + 1 do
            if phi[i] = i then
                for j from i by i to N + 1 do
                    phi[j] := phi[j] - iquo(phi[j], i) od
            fi od;
    return phi end:
    A000010List(68);  # Peter Luschny, Sep 03 2023
  • Mathematica
    Array[EulerPhi, 70]
  • Maxima
    makelist(totient(n),n,0,1000); /* Emanuele Munarini, Mar 26 2011 */
    
  • PARI
    {a(n) = if( n==0, 0, eulerphi(n))}; /* Michael Somos, Feb 05 2011 */
    
  • Python
    from sympy.ntheory import totient
    print([totient(i) for i in range(1, 70)])  # Indranil Ghosh, Mar 17 2017
    
  • Python
    # Note also the implementation in A365339.
    
  • Sage
    def A000010(n): return euler_phi(n) # Jaap Spies, Jan 07 2007
    
  • Sage
    [euler_phi(n) for n in range(1, 70)]  # Zerinvary Lajos, Jun 06 2009
    

Formula

phi(n) = n*Product_{distinct primes p dividing n} (1 - 1/p).
Sum_{d divides n} phi(d) = n.
phi(n) = Sum_{d divides n} mu(d)*n/d, i.e., the Moebius transform of the natural numbers; mu() = Moebius function A008683().
Dirichlet generating function Sum_{n>=1} phi(n)/n^s = zeta(s-1)/zeta(s). Also Sum_{n >= 1} phi(n)*x^n/(1 - x^n) = x/(1 - x)^2.
Multiplicative with a(p^e) = (p - 1)*p^(e-1). - David W. Wilson, Aug 01 2001
Sum_{n>=1} (phi(n)*log(1 - x^n)/n) = -x/(1 - x) for -1 < x < 1 (cf. A002088) - Henry Bottomley, Nov 16 2001
a(n) = binomial(n+1, 2) - Sum_{i=1..n-1} a(i)*floor(n/i) (see A000217 for inverse). - Jon Perry, Mar 02 2004
It is a classical result (certainly known to Landau, 1909) that lim inf n/phi(n) = 1 (taking n to be primes), lim sup n/(phi(n)*log(log(n))) = e^gamma, with gamma = Euler's constant (taking n to be products of consecutive primes starting from 2 and applying Mertens' theorem). See e.g. Ribenboim, pp. 319-320. - Pieter Moree, Sep 10 2004
a(n) = Sum_{i=1..n} |k(n, i)| where k(n, i) is the Kronecker symbol. Also a(n) = n - #{1 <= i <= n : k(n, i) = 0}. - Benoit Cloitre, Aug 06 2004 [Corrected by Jianing Song, Sep 25 2018]
Conjecture: Sum_{i>=2} (-1)^i/(i*phi(i)) exists and is approximately 0.558 (A335319). - Orges Leka (oleka(AT)students.uni-mainz.de), Dec 23 2004
From Enrique Pérez Herrero, Sep 07 2010: (Start)
a(n) = Sum_{i=1..n} floor(sigma_k(i*n)/sigma_k(i)*sigma_k(n)), where sigma_2 is A001157.
a(n) = Sum_{i=1..n} floor(tau_k(i*n)/tau_k(i)*tau_k(n)), where tau_3 is A007425.
a(n) = Sum_{i=1..n} floor(rad(i*n)/rad(i)*rad(n)), where rad is A007947. (End)
a(n) = A173557(n)*A003557(n). - R. J. Mathar, Mar 30 2011
a(n) = A096396(n) + A096397(n). - Reinhard Zumkeller, Mar 24 2012
phi(p*n) = phi(n)*(floor(((n + p - 1) mod p)/(p - 1)) + p - 1), for primes p. - Gary Detlefs, Apr 21 2012
For odd n, a(n) = 2*A135303((n-1)/2)*A003558((n-1)/2) or phi(n) = 2*c*k; the Coach theorem of Pedersen et al. Cf. A135303. - Gary W. Adamson, Aug 15 2012
G.f.: Sum_{n>=1} mu(n)*x^n/(1 - x^n)^2, where mu(n) = A008683(n). - Mamuka Jibladze, Apr 05 2015
a(n) = n - cototient(n) = n - A051953(n). - Omar E. Pol, May 14 2016
a(n) = lim_{s->1} n*zeta(s)*(Sum_{d divides n} A008683(d)/(e^(1/d))^(s-1)), for n > 1. - Mats Granvik, Jan 26 2017
Conjecture: a(n) = Sum_{a=1..n} Sum_{b=1..n} Sum_{c=1..n} 1 for n > 1. The sum is over a,b,c such that n*c - a*b = 1. - Benedict W. J. Irwin, Apr 03 2017
a(n) = Sum_{j=1..n} gcd(j, n) cos(2*Pi*j/n) = Sum_{j=1..n} gcd(j, n) exp(2*Pi*i*j/n) where i is the imaginary unit. Notice that the Ramanujan's sum c_n(k) := Sum_{j=1..n, gcd(j, n) = 1} exp(2*Pi*i*j*k/n) gives a(n) = Sum_{k|n} k*c_(n/k)(1) = Sum_{k|n} k*mu(n/k). - Michael Somos, May 13 2018
G.f.: x*d/dx(x*d/dx(log(Product_{k>=1} (1 - x^k)^(-mu(k)/k^2)))), where mu(n) = A008683(n). - Mamuka Jibladze, Sep 20 2018
a(n) = Sum_{d|n} A007431(d). - Steven Foster Clark, May 29 2019
G.f. A(x) satisfies: A(x) = x/(1 - x)^2 - Sum_{k>=2} A(x^k). - Ilya Gutkovskiy, Sep 06 2019
a(n) >= sqrt(n/2) (Nicolas). - Hugo Pfoertner, Jun 01 2020
a(n) > n/(exp(gamma)*log(log(n)) + 5/(2*log(log(n)))), except for n=223092870 (Rosser, Schoenfeld). - Hugo Pfoertner, Jun 02 2020
From Bernard Schott, Nov 28 2020: (Start)
Sum_{m=1..n} 1/a(m) = A028415(n)/A048049(n) -> oo when n->oo.
Sum_{n >= 1} 1/a(n)^2 = A109695.
Sum_{n >= 1} 1/a(n)^3 = A335818.
Sum_{n >= 1} 1/a(n)^k is convergent iff k > 1.
a(2n) = a(n) iff n is odd, and, a(2n) > a(n) iff n is even. (End) [Actually, a(2n) = 2*a(n) for even n. - Jianing Song, Sep 18 2022]
a(n) = 2*A023896(n)/n, n > 1. - Richard R. Forberg, Feb 03 2021
From Richard L. Ollerton, May 09 2021: (Start)
For n > 1, Sum_{k=1..n} phi^{(-1)}(n/gcd(n,k))*a(gcd(n,k))/a(n/gcd(n,k)) = 0, where phi^{(-1)} = A023900.
For n > 1, Sum_{k=1..n} a(gcd(n,k))*mu(rad(gcd(n,k)))*rad(gcd(n,k))/gcd(n,k) = 0.
For n > 1, Sum_{k=1..n} a(gcd(n,k))*mu(rad(n/gcd(n,k)))*rad(n/gcd(n,k))*gcd(n,k) = 0.
Sum_{k=1..n} a(gcd(n,k))/a(n/gcd(n,k)) = n. (End)
a(n) = Sum_{d|n, e|n} gcd(d, e)*mobius(n/d)*mobius(n/e) (the sum is a multiplicative function of n by Tóth, and takes the value p^e - p^(e-1) for n = p^e, a prime power). - Peter Bala, Jan 22 2024
Sum_{n >= 1} phi(n)*x^n/(1 + x^n) = x + 3*x^3 + 5*x^5 + 7*x^7 + ... = Sum_{n >= 1} phi(2*n-1)*x^(2*n-1)/(1 - x^(4*n-2)). For the first equality see Pólya and Szegő, problem 71, p. 126. - Peter Bala, Feb 29 2024
Conjecture: a(n) = lim_{k->oo} (n^(k + 1))/A000203(n^k). - Velin Yanev, Dec 04 2024 [A000010(p) = p-1, A000203(p^k) = (p^(k+1)-1)/(p-1), so the conjecture is true if n is prime. - Vaclav Kotesovec, Dec 19 2024]

A001160 sigma_5(n), the sum of the 5th powers of the divisors of n.

Original entry on oeis.org

1, 33, 244, 1057, 3126, 8052, 16808, 33825, 59293, 103158, 161052, 257908, 371294, 554664, 762744, 1082401, 1419858, 1956669, 2476100, 3304182, 4101152, 5314716, 6436344, 8253300, 9768751, 12252702, 14408200, 17766056, 20511150
Offset: 1

Views

Author

Keywords

Comments

If the canonical factorization of n into prime powers is the product of p^e(p) then sigma_k(n) = Product_p ((p^((e(p)+1)*k))-1)/(p^k-1).
Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001
Empirical: Sum_{n>=1} a(n)/exp(2*Pi*n) = 1/504. - Simon Plouffe, Mar 01 2021

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math.Series 55, Tenth Printing, 1972, p. 827.
  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, AMS Chelsea Publishing, Providence, Rhode Island, 2002, p. 166.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Zagier, Don. "Elliptic modular forms and their applications." The 1-2-3 of modular forms. Springer Berlin Heidelberg, 2008. 1-103. See p. 17, G_6(z).

Crossrefs

Cf. A000005, A000203, A001157, A001158, A001159, A013973, A000584 (Mobius transform), A178448 (Dirichlet inverse)

Programs

Formula

Multiplicative with a(p^e) = (p^(5e+5)-1)/(p^5-1). - David W. Wilson, Aug 01 2001
G.f.: sum(k>=1, k^5*x^k/(1-x^k)). - Benoit Cloitre, Apr 21 2003
Dirichlet g.f.: zeta(s)*zeta(s-5). - R. J. Mathar, Mar 06 2011
G.f. also (1 - E_6(q))/540, with the g.f. E_6 of A013973. See Hardy p. 166, (10.5.7) with R = E_6. - Wolfdieter Lang, Jan 31 2017
L.g.f.: -log(Product_{k>=1} (1 - x^k)^(k^4)) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, May 06 2017
a(n) = Sum_{1 <= i, j, k, l, m <= n} tau(gcd(i, j, k, l, m, n)) = Sum_{d divides n} tau(d) * J_5(n/d), where the divisor function tau(n) = A000005(n) and the Jordan totient function J_5(n) = A059378(n). - Peter Bala, Jan 22 2024

A007434 Jordan function J_2(n) (a generalization of phi(n)).

Original entry on oeis.org

1, 3, 8, 12, 24, 24, 48, 48, 72, 72, 120, 96, 168, 144, 192, 192, 288, 216, 360, 288, 384, 360, 528, 384, 600, 504, 648, 576, 840, 576, 960, 768, 960, 864, 1152, 864, 1368, 1080, 1344, 1152, 1680, 1152, 1848, 1440, 1728, 1584, 2208, 1536
Offset: 1

Views

Author

Keywords

Comments

Number of points in the bicyclic group Z/mZ X Z/mZ whose order is exactly m. - George J. Schaeffer (gschaeff(AT)andrew.cmu.edu), Mar 14 2006
Number of irreducible fractions among {(u+v*i)/n : 1 <= u, v <= n} with i = sqrt(-1), where a fraction (u+v*i)/n is called irreducible if and only if gcd(u, v, n) = 1. - Reinhard Zumkeller, Aug 20 2005
The weight of the n-th polynomial for the analog of cyclotomic polynomials for elliptic divisibility sequences. That is, let the weight of b1 = 1, b2 = 3, b3 = 8, b4 = 12 and let e1 = b1, e2 = b2*b1, e3 = b3*b1, e4 = b2*b4*b1, e5 = (b2^4*b4 - b3^3)*b1 = b5*e1, and so on, be an elliptic divisibility sequence. Then weight of e2 = 4, e3 = 9, e4 = 16, e5 = 25, where weight of en is n^2 in general, while weight of bn is a(n). - Michael Somos, Aug 12 2008
J_2(n) divides J_{2k}(n). J_2(n) gives the number of 2-tuples (x1,x2), such that 1 <= x1, x2 <= n and gcd(x1, x2, n) = 1. - Enrique Pérez Herrero, Mar 05 2011
From Jianing Song, Apr 06 2019: (Start)
Let k be any quadratic field such that all prime factors of n are inert in k, O_k be the corresponding ring of integers and G(n) = (O_k/nO_k)* be the multiplicative group of integers in O_k modulo n, then a(n) is the number of elements in G(n). The exponent of G(n) is A306933(n). [Equivalently, G(p^e) can be defined as (Z_{p^2}/p^eZ_{p^2})*, where Z_{p^2} is the ring of integers of the field Q_{p^2} (with a unique maximal ideal pZ_{p^2}), and Q_{p^2} is the unique unramified quadratic extension of the p-adic field Q_p. For the group structure of G(p^e), see A306933. - Jianing Song, Jun 19 2025]
For n >= 5, a(n) is divisible by 24. (End)
The Del Centina article on page 106 mentions a formula by Halphen denoted by phi(n)T(n). - Michael Somos, Feb 05 2021

Examples

			a(4) = 12 because the divisors of 4 being 1, 2, 4, we find that phi(1)*phi(4/1)*(4/1) = 8, phi(2)*phi(4/2)*(4/2) = 2, phi(4)*phi(4/4)*(4/4) = 2 and 8 + 2 + 2 = 12.
G.f. = x + 3*x^2 + 8*x^3 + 12*x^4 + 24*x^5 + 24*x^6 + 48*x^7 + 48*x^8 + 72*x^9 + ...
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 199, #3.
  • A. Del Centina, Poncelet's porism: a long story of renewed discoveries, I, Hist. Exact Sci. (2016), v. 70, p. 106.
  • L. E. Dickson (1919, repr. 1971). History of the Theory of Numbers I. Chelsea. p. 147.
  • P. J. McCarthy, Introduction to Arithmetical Functions, Universitext, Springer, New York, NY, USA, 1986.
  • G. Pólya and G. Szegő, Problems and Theorems in Analysis I (Springer 1924, reprinted 1972), Part Eight, Chap. 1, Section 6, Problem 64.
  • M. Ram Murty (2001). Problems in Analytic Number Theory. Graduate Texts in Mathematics. 206. Springer-Verlag. p. 11.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A059379 and A059380 (triangle of values of J_k(n)).
Cf. A000010 (J_1), this sequence (J_2), A059376 (J_3), A059377 (J_4), A059378 (J_5).
Cf. A002117, A088453, A301875, A301876, A321879 (partial sums).

Programs

  • Haskell
    a007434 n = sum $ zipWith3 (\x y z -> x * y * z)
                      tdivs (reverse tdivs) (reverse divs)
                      where divs = a027750_row n;  tdivs = map a000010 divs
    -- Reinhard Zumkeller, Nov 24 2012
    
  • Maple
    J := proc(n,k) local i,p,t1,t2; t1 := n^k; for p from 1 to n do if isprime(p) and n mod p = 0 then t1 := t1*(1-p^(-k)); fi; od; t1; end; # (with k = 2)
    A007434 := proc(n)
        add(d^2*numtheory[mobius](n/d),d=numtheory[divisors](n)) ;
    end proc: # R. J. Mathar, Nov 03 2015
  • Mathematica
    jordanTotient[n_, k_:1] := DivisorSum[n, #^k*MoebiusMu[n/#] &] /; (n > 0) && IntegerQ[n]; Table[jordanTotient[n, 2], {n, 48}] (* Enrique Pérez Herrero, Sep 14 2010 *)
    a[ n_] := If[ n < 1, 0, Sum[ d^2 MoebiusMu[ n/d], {d, Divisors @ n}]]; (* Michael Somos, Jan 11 2014 *)
    a[ n_] := If[ n < 2, Boole[ n == 1], n^2 (Times @@ ((1 - 1/#[[1]]^2) & /@ FactorInteger @ n))]; (* Michael Somos, Jan 11 2014 *)
    jordanTotient[n_Integer?Positive, r_:1] := DirichletConvolve[MoebiusMu[K], K^r, K, n]; Table[jordanTotient[n, 2], {n, 48}] (* Jan Mangaldan, Jun 03 2016 *)
  • PARI
    {a(n) = if( n<1, 0, sumdiv(n, d, d^2 * moebius(n / d)))}; /* Michael Somos, Mar 20 2004 */
    
  • PARI
    {a(n) = if( n<1, 0, direuler( p=2, n, (1 - X) / (1 - X*p^2))[n])}; /* Michael Somos, Jan 11 2014 */
    
  • PARI
    seq(n) = dirmul(vector(n,k,k^2), vector(n,k,moebius(k)));
    seq(48)  \\ Gheorghe Coserea, May 11 2016
    
  • PARI
    jordan(n,k)=my(a=n^k);fordiv(n,i,if(isprime(i),a*=(1-1/(i^k))));a  \\ Roderick MacPhee, May 05 2017
    
  • Python
    from math import prod
    from sympy import factorint
    def A007434(n): return prod(p**(e-1<<1)*(p**2-1) for p, e in factorint(n).items()) # Chai Wah Wu, Jan 29 2024

Formula

Moebius transform of squares.
Multiplicative with a(p^e) = p^(2e) - p^(2e-2). - Vladeta Jovovic, Jul 26 2001
a(n) = Sum_{d|n} d^2 * mu(n/d). - Benoit Cloitre, Apr 05 2002
a(n) = n^2 * Product_{p|n} (1-1/p^2). - Tom Edgar, Jan 07 2015
a(n) = Sum_{d|n} phi(d)*phi(n/d)*n/d; Sum_{d|n} a(d) = n^2. - Reinhard Zumkeller, Aug 20 2005
Dirichlet generating function: zeta(s-2)/zeta(s). - Franklin T. Adams-Watters, Sep 11 2005
Dirichlet inverse of A046970. - Michael Somos, Jan 11 2014
a(n) = a(n^2)/n^2. - Enrique Pérez Herrero, Sep 14 2010
a(n) = A000010(n) * A001615(n).
If n > 1, then 1 > a(n)/n^2 > 1/zeta(2). - Enrique Pérez Herrero, Jul 14 2011
a(n) = Sum_{d|n} phi(n^2/d)*mu(d)^2. - Enrique Pérez Herrero, Jul 24 2012
a(n) = Sum_{k = 1..n} gcd(k, n)^2 * cos(2*Pi*k/n). - Enrique Pérez Herrero, Jan 18 2013
a(1) + a(2) + ... + a(n) ~ 1/(3*zeta(3))*n^3 + O(n^2). Lambert series Sum_{n >= 1} a(n)*x^n/(1 - x^n) = x*(1 + x)/(1 - x)^3. - Peter Bala, Dec 23 2013
n * a(n) = A000056(n). - Michael Somos, Mar 20 2004
a(n) = 24 * A115000(n) unless n < 5. - Michael Somos, Aug 12 2008
a(n) = A001065(n) - A134675(n). - Conjectured by John Mason and proved by Max Alekseyev, Jan 07 2015
a(n) = Sum_{k=1..n} gcd(n, k) * phi(gcd(n, k)), where phi(k) is the Euler totient function. - Daniel Suteu, Jun 15 2018
G.f.: Sum_{k>=1} mu(k)*x^k*(1 + x^k)/(1 - x^k)^3. - Ilya Gutkovskiy, Oct 24 2018
Sum_{k>=1} 1/a(k) = Product_{primes p} (1 + p^2/(p^2 - 1)^2) = 1.81078147612156295224312590448625180897250361794500723589001447178002894356... - Vaclav Kotesovec, Sep 19 2020
Limit_{n->oo} (1/n) * Sum_{k=1..n} a(k)/k^2 = 1/zeta(3) (A088453). - Amiram Eldar, Oct 12 2020
From Richard L. Ollerton, May 09 2021: (Start)
a(n) = Sum_{k=1..n} (n/gcd(n,k))^2*mu(gcd(n,k))/phi(n/gcd(n,k)).
a(n) = Sum_{k=1..n} gcd(n,k)^2*mu(n/gcd(n,k))/phi(n/gcd(n,k)).
a(n) = Sum_{k=1..n} n*phi(gcd(n,k))/gcd(n,k).
a(n) = Sum_{k=1..n} phi(n*gcd(n,k))*mu(n/gcd(n,k))^2.
a(n) = Sum_{k=1..n} phi(n^2/gcd(n,k))*mu(gcd(n,k))^2*phi(gcd(n,k))/phi(n/gcd(n,k)). (End)
a(n) = Sum_{k = 1..n} phi(gcd(n, k)^2) = Sum_{d divides n} phi(d^2)*phi(n/d). - Peter Bala, Jan 17 2024
a(n) = Sum_{1 <= i, j <= n, lcm(i, j) = n} phi(i)*phi(j). See Tóth, p. 14. - Peter Bala, Jan 29 2024
Conjecture: a(n) = lim_{k->oo} (n^(2*(k + 1)))/A001157(n^k). - Velin Yanev, Dec 04 2024

Extensions

Thanks to Michael Somos for catching an error in this sequence.

A000539 Sum of 5th powers: 0^5 + 1^5 + 2^5 + ... + n^5.

Original entry on oeis.org

0, 1, 33, 276, 1300, 4425, 12201, 29008, 61776, 120825, 220825, 381876, 630708, 1002001, 1539825, 2299200, 3347776, 4767633, 6657201, 9133300, 12333300, 16417401, 21571033, 28007376, 35970000, 45735625, 57617001, 71965908, 89176276, 109687425, 133987425, 162616576
Offset: 0

Views

Author

Keywords

Comments

This sequence is related to A000538 by a(n) = n*A000538(n) - Sum_{i=0..n-1} A000538(i). - Bruno Berselli, Apr 26 2010
See comment in A008292 for a formula for r-th successive summation of Sum_{k=1..n} k^j. - Gary Detlefs, Jan 02 2014

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 813.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 155.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1991, p. 275.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Partial sums of A000584. Row 5 of array A103438.

Programs

  • Magma
    [n^2*(n+1)^2*(2*n^2+2*n-1)/12: n in [0..30]]; // Vincenzo Librandi, Apr 04 2015
    
  • Maple
    A000539:=-(1+26*z+66*z**2+26*z**3+z**4)/(z-1)**7; # Simon Plouffe in his 1992 dissertation
    a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=a[n-1]+n^5 od: seq(a[n], n=0..30); # Zerinvary Lajos, Feb 22 2008
    a:=n->sum(j^5,j=0..n): seq(a(n), n=0..30); # Zerinvary Lajos, Jun 05 2008
  • Mathematica
    Accumulate[Range[0, 40]^5]
    LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {0, 1, 33, 276, 1300, 4425, 12201}, 41] (* Jean-François Alcover, Feb 09 2016 *)
  • Maxima
    A000539(n):=n^2*(n+1)^2*(2*n^2+2*n-1)/12$ makelist(A000539(n),n,0,30); /* Martin Ettl, Nov 12 2012 */
    
  • PARI
    a(n)=n^2*(n+1)^2*(2*n^2+2*n-1)/12 \\ Charles R Greathouse IV, Jul 15 2011
    
  • PARI
    concat(0, Vec(x*(1+26*x+66*x^2+26*x^3+x^4)/(1-x)^7 + O(x^100))) \\ Altug Alkan, Dec 07 2015
    
  • Python
    A000539_list, m = [0], [120, -240, 150, -30, 1, 0, 0]
    for _ in range(10**2):
        for i in range(6):
            m[i+1] += m[i]
        A000539_list.append(m[-1]) # Chai Wah Wu, Nov 05 2014
    
  • Python
    def A000539(n): return n**2*(n**2*(n*(n+3<<1)+5)-1)//12 # Chai Wah Wu, Oct 03 2024

Formula

a(n) = n^2*(n+1)^2*(2*n^2+2*n-1)/12.
a(n) = sqrt(Sum_{j=1..n}Sum_{i=1..n}(i*j)^5). - Alexander Adamchuk, Oct 26 2004
a(n) = Sum_{i = 1..n} J_5(i)*floor(n/i), where J_5 is A059378. - Enrique Pérez Herrero, Feb 26 2012
a(n) = 6*a(n-1) - 15* a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) + 120. - Ant King, Sep 23 2013
a(n) = 120*C(n+3,6) + 30*C(n+2,4) + C(n+1,2) (Knuth). - Gary Detlefs, Jan 02 2014
a(n) = -Sum_{j=1..5} j*Stirling1(n+1,n+1-j)*Stirling2(n+5-j,n). - Mircea Merca, Jan 25 2014
Sum_{n>=1} 1/a(n) = 60 - 4*Pi^2 + 8*sqrt(3)*Pi * tan(sqrt(3)*Pi/2). - Vaclav Kotesovec, Feb 13 2015
a(n) = (n + 1)^2*n^2*(n + 1/2 + sqrt(3/4))*(n + 1/2 - sqrt(3/4))/6. See the Graham et al. reference, p. 275. - Wolfdieter Lang, Apr 02 2015
G.f.: x*(1+26*x+66*x^2+26*x^3+x^4)/(1-x)^7. - Robert Israel, Dec 07 2015
a(n) = (4/3)*A000217(n)^3 - (1/3)*A000217(n)^2. - Michael Raney, Feb 19 2016
a(n) = (binomial(n+1,4) + 6*binomial(n+2,4) + binomial(n+3,4))*(binomial(n+2,3) - binomial(n+1,3)). - Tony Foster III, Oct 21 2018
a(n) = 24*A006542(n+2) + A000537(n). - Yasser Arath Chavez Reyes, May 04 2024
E.g.f.: exp(x)*x*(12 + 186*x + 360*x^2 + 195*x^3 + 36*x^4 + 2*x^5)/12. - Stefano Spezia, May 04 2024

A059376 Jordan function J_3(n).

Original entry on oeis.org

1, 7, 26, 56, 124, 182, 342, 448, 702, 868, 1330, 1456, 2196, 2394, 3224, 3584, 4912, 4914, 6858, 6944, 8892, 9310, 12166, 11648, 15500, 15372, 18954, 19152, 24388, 22568, 29790, 28672, 34580, 34384, 42408, 39312, 50652, 48006, 57096
Offset: 1

Views

Author

N. J. A. Sloane, Jan 28 2001

Keywords

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 199, #3.
  • R. Sivaramakrishnan, "The many facets of Euler's totient. II. Generalizations and analogues", Nieuw Arch. Wisk. (4) 8 (1990), no. 2, 169-187.

Crossrefs

See A059379 and A059380 (triangle of values of J_k(n)), A000010 (J_1), A007434 (J_2), A059377 (J_4), A059378 (J_5), A069091 - A069095 (J_6 through J_10).

Programs

  • Maple
    J := proc(n,k) local i,p,t1,t2; t1 := n^k; for p from 1 to n do if isprime(p) and n mod p = 0 then t1 := t1*(1-p^(-k)); fi; od; t1; end; # (with k = 3)
    A059376 := proc(n)
        add(d^3*numtheory[mobius](n/d),d=numtheory[divisors](n)) ;
    end proc: # R. J. Mathar, Nov 03 2015
  • Mathematica
    JordanJ[n_, k_: 1] := DivisorSum[n, #^k*MoebiusMu[n/#] &]; f[n_] := JordanJ[n, 3]; Array[f, 39]
    f[p_, e_] := p^(3*e) - p^(3*(e-1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 12 2020 *)
  • PARI
    for(n=1,120,print1(sumdiv(n,d,d^3*moebius(n/d)),","))
    
  • PARI
    for (n = 1, 1000, write("b059376.txt", n, " ", sumdiv(n, d, d^3*moebius(n/d))); ) \\ Harry J. Smith, Jun 26 2009
    
  • PARI
    seq(n) = dirmul(vector(n,k,k^3), vector(n,k,moebius(k)));
    seq(39)  \\ Gheorghe Coserea, May 11 2016
    
  • Python
    from math import prod
    from sympy import factorint
    def A059376(n): return prod(p**(3*(e-1))*(p**3-1) for p, e in factorint(n).items()) # Chai Wah Wu, Jan 29 2024

Formula

Multiplicative with a(p^e) = p^(3e) - p^(3e-3). - Vladeta Jovovic, Jul 26 2001
a(n) = Sum_{d|n} d^3*mu(n/d). - Benoit Cloitre, Apr 05 2002
Dirichlet generating function: zeta(s-3)/zeta(s). - Franklin T. Adams-Watters, Sep 11 2005
A063453(n) divides a(n). - R. J. Mathar, Mar 30 2011
a(n) = Sum_{k=1..n} gcd(k,n)^3 * cos(2*Pi*k/n). - Enrique Pérez Herrero, Jan 18 2013
a(n) = n^3*Product_{distinct primes p dividing n} (1-1/p^3). - Tom Edgar, Jan 09 2015
G.f.: Sum_{n>=1} a(n)*x^n/(1 - x^n) = x*(1 + 4*x + x^2)/(1 - x)^4. - Ilya Gutkovskiy, Apr 25 2017
Sum_{d|n} a(d) = n^3. - Werner Schulte, Jan 12 2018
Sum_{k=1..n} a(k) ~ 45*n^4 / (2*Pi^4). - Vaclav Kotesovec, Feb 07 2019
From Amiram Eldar, Oct 12 2020: (Start)
lim_{n->oo} (1/n) * Sum_{k=1..n} a(k)/k^3 = 1/zeta(4) (A215267).
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + p^3/(p^3-1)^2) = 1.2253556451... (End)
O.g.f.: Sum_{n >= 1} mu(n)*x^n*(1 + 4*x^n + x^(2*n))/(1 - x^n)^4 = x + 7*x^2 + 26*x^3 + 56*x^4 + 124*x^5 + .... - Peter Bala, Jan 31 2022
From Peter Bala, Jan 01 2024: (Start)
a(n) = Sum_{d divides n} d * J_2(d) * phi(n/d) = Sum_{d divides n} d^2 * phi(d) * J_2(n/d), where J_2(n) = A007434(n).
a(n) = Sum_{k = 1..n} gcd(k, n) * J_2(gcd(k, n)) = Sum_{1 <= j, k <= n} gcd(j, k, n)^2 * J_1(gcd(j, k, n)). (End)
a(n) = Sum_{1 <= i, j <= n, lcm(i, j) = n} phi(i)*J_2(j) = Sum_{1 <= i, j, k <= n, lcm(i, j, k) = n} phi(i)*phi(j)*phi(k), where J_2(n) = A007434(n). - Peter Bala, Jan 29 2024

A059377 Jordan function J_4(n).

Original entry on oeis.org

1, 15, 80, 240, 624, 1200, 2400, 3840, 6480, 9360, 14640, 19200, 28560, 36000, 49920, 61440, 83520, 97200, 130320, 149760, 192000, 219600, 279840, 307200, 390000, 428400, 524880, 576000, 707280, 748800, 923520, 983040, 1171200, 1252800, 1497600, 1555200, 1874160
Offset: 1

Views

Author

N. J. A. Sloane, Jan 28 2001

Keywords

Comments

This sequence is multiplicative. - Mitch Harris, Apr 19 2005
For n = 4 or n >= 6, a(n) is divisible by 240. - Jianing Song, Apr 06 2019

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 199, #3.
  • R. Sivaramakrishnan, "The many facets of Euler's totient. II. Generalizations and analogues", Nieuw Arch. Wisk. (4) 8 (1990), no. 2, 169-187.

Crossrefs

See A059379 and A059380 (triangle of values of J_k(n)), A000010 (J_1), A007434 (J_2), A059376 (J_3), A059378 (J_5), A069091 - A069095 (J_6 through J_10).
Cf. A013663.

Programs

  • Maple
    J := proc(n,k) local i,p,t1,t2; t1 := n^k; for p from 1 to n do if isprime(p) and n mod p = 0 then t1 := t1*(1-p^(-k)); fi; od; t1; end:
    seq(J(n,4), n=1..40);
  • Mathematica
    JordanJ[n_, k_: 1] := DivisorSum[n, #^k*MoebiusMu[n/#] &]; f[n_] := JordanJ[n, 4]; Array[f, 38]
    f[p_, e_] := p^(4*e) - p^(4*(e-1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 12 2020 *)
  • PARI
    for(n=1,100,print1(sumdiv(n,d,d^4*moebius(n/d)),","))
    
  • PARI
    a(n)=if(n<1,0,sumdiv(n,d,d^4*moebius(n/d)))
    
  • PARI
    a(n)=if(n<1,0,dirdiv(vector(n,k,k^4),vector(n,k,1))[n])
    
  • PARI
    { for (n = 1, 1000, write("b059377.txt", n, " ", sumdiv(n, d, d^4*moebius(n/d))); ) } \\ Harry J. Smith, Jun 26 2009

Formula

a(n) = Sum_{d|n} d^4*mu(n/d). - Benoit Cloitre, Apr 05 2002
Multiplicative with a(p^e) = p^(4e)-p^(4(e-1)).
Dirichlet generating function: zeta(s-4)/zeta(s). - Franklin T. Adams-Watters, Sep 11 2005
a(n) = Sum_{k=1..n} gcd(k,n)^4 * cos(2*Pi*k/n). - Enrique Pérez Herrero, Jan 18 2013
a(n) = n^4*Product_{distinct primes p dividing n} (1 - 1/p^4). - Tom Edgar, Jan 09 2015
G.f.: Sum_{n>=1} a(n)*x^n/(1 - x^n) = x*(1 + 11*x + 11*x^2 + x^3)/(1 - x)^5. - Ilya Gutkovskiy, Apr 25 2017
Sum_{k=1..n} a(k) ~ n^5 / (5*zeta(5)). - Vaclav Kotesovec, Feb 07 2019
From Amiram Eldar, Oct 12 2020: (Start)
lim_{n->oo} (1/n) * Sum_{k=1..n} a(k)/k^4 = 1/zeta(5).
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + p^4/(p^4-1)^2) = 1.0870036174... (End)
O.g.f.: Sum_{n >= 1} mu(n)*x^n*(1 + 11*x^n + 11*x^(2*n) + x^(3*n))/(1 - x^n)^5 = x + 15*x^2 + 80*x^3 + 240*x^4 + 624*x^5 + .... - Peter Bala, Jan 31 2022
From Peter Bala, Jan 01 2024: (Start)
a(n) = Sum_{d divides n} d * J_3(d) * J_1(n/d) = Sum_{d divides n} d^2 * J_2(d) * J_2(n/d) = Sum_{d divides n} d^3 * J_1(d) * J_3(n/d), where J_1(n) = phi(n) = A000010(n), J_2(n) = A007434(n) and J(3,n) = A059376(n).
a(n) = Sum_{k = 1..n} gcd(k, n) * J_3(gcd(k, n)) = Sum_{1 <= j, k <= n} gcd(j, k, n)^2 * J_2(gcd(j, k, n)) = Sum_{1 <= i, j, k <= n} gcd(i, j, k, n)^3 * J_1(gcd(i, j, k, n)). (End)
a(n) = Sum_{1 <= i, j <= n, lcm(i, j) = n} J_2(i) * J_2(j) = Sum_{1 <= i, j <= n, lcm(i, j) = n} phi(i) * J_3(j) (apply Lehmer, Theorem 1). - Peter Bala, Jan 29 2024

A059379 Array of values of Jordan function J_k(n) read by antidiagonals (version 1).

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 2, 8, 7, 1, 4, 12, 26, 15, 1, 2, 24, 56, 80, 31, 1, 6, 24, 124, 240, 242, 63, 1, 4, 48, 182, 624, 992, 728, 127, 1, 6, 48, 342, 1200, 3124, 4032, 2186, 255, 1, 4, 72, 448, 2400, 7502, 15624, 16256, 6560, 511, 1, 10, 72, 702, 3840
Offset: 1

Views

Author

N. J. A. Sloane, Jan 28 2001

Keywords

Examples

			Array begins:
  1,  1,  2,   2,   4,    2,    6,    4,   6,  4, 10, 4, ...
  1,  3,  8,  12,  24,   24,   48,   48,  72, 72, ...
  1,  7, 26,  56, 124,  182,  342,  448, 702, ...
  1, 15, 80, 240, 624, 1200, 2400, 3840, ...
		

References

  • Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 199, #3.
  • R. Sivaramakrishnan, "The many facets of Euler's totient. II. Generalizations and analogues", Nieuw Arch. Wisk. (4) 8 (1990), no. 2, 169-187.

Crossrefs

See A059379 and A059380 (triangle of values of J_k(n)), A000010 (J_1), A059376 (J_3), A059377 (J_4), A059378 (J_5). Columns give A000225, A024023, A020522, A024049, A059387, etc.
Main diagonal gives A067858.

Programs

  • Maple
    J := proc(n,k) local i,p,t1,t2; t1 := n^k; for p from 1 to n do if isprime(p) and n mod p = 0 then t1 := t1*(1-p^(-k)); fi; od; t1; end;
    #alternative
    A059379 := proc(n,k)
        add(d^k*numtheory[mobius](n/d),d=numtheory[divisors](n)) ;
    end proc:
    seq(seq(A059379(d-k,k),k=1..d-1),d=2..12) ; # R. J. Mathar, Nov 23 2018
  • Mathematica
    JordanTotient[n_,k_:1]:=DivisorSum[n,#^k*MoebiusMu[n/#]&]/;(n>0)&&IntegerQ[n];
    A004736[n_]:=Binomial[Floor[3/2+Sqrt[2*n]],2]-n+1;
    A002260[n_]:=n-Binomial[Floor[1/2+Sqrt[2*n]],2];
    A059379[n_]:=JordanTotient[A004736[n],A002260[n]]; (* Enrique Pérez Herrero, Dec 19 2010 *)
  • PARI
    jordantot(n,k)=sumdiv(n,d,d^k*moebius(n/d));
    A002260(n)=n-binomial(floor(1/2+sqrt(2*n)),2);
    A004736(n)=binomial(floor(3/2+sqrt(2*n)),2)-n+1;
    A059379(n)=jordantot(A004736(n),A002260(n)); \\ Enrique Pérez Herrero, Jan 08 2011
    
  • Python
    from functools import cache
    def MoebiusTrans(a, i):
        @cache
        def mb(n, d = 1):
              return d % n and -mb(d, n % d < 1) + mb(n, d + 1) or 1 // n
        def mob(m, n): return mb(m // n) if m % n == 0 else 0
        return sum(mob(i, d) * a(d) for d in range(1, i + 1))
    def Jrow(n, size):
        return [MoebiusTrans(lambda m: m ** n, k) for k in range(1, size)]
    for n in range(1, 8): print(Jrow(n, 13))
    # Alternatively:
    from sympy import primefactors as prime_divisors
    from fractions import Fraction as QQ
    from math import prod as product
    def J(n: int, k: int) -> int:
        t = QQ(pow(k, n), 1)
        s = product(1 - QQ(1, pow(p, n)) for p in prime_divisors(k))
        return (t * s).numerator  # the denominator is always 1
    for n in range(1, 8): print([J(n, k) for k in range(1, 13)])
    # Peter Luschny, Dec 16 2023

Formula

J_k(n) = Sum_{d|n} d^k*mu(n/d). - Benoit Cloitre and Michael Orrison (orrison(AT)math.hmc.edu), Jun 07 2002
From Amiram Eldar, Jun 07 2025: (Start)
For a given k, J_k(n) is multiplicative with J_k(p^e) = p^(k*e) - p^(k*e-k).
For a given k, Dirichlet g.f. of J_k(n): zeta(s-k)/zeta(s).
Sum_{i=1..n} J_k(i) ~ n^(k+1) / ((k+1)*zeta(k+1)).
Sum_{n>=1} 1/J_k(n) = Product_{p prime} (1 + p^k/(p^k-1)^2) for k >= 2. (End)

A059380 Array of values of Jordan function J_k(n) read by antidiagonals (version 2).

Original entry on oeis.org

1, 1, 1, 1, 3, 2, 1, 7, 8, 2, 1, 15, 26, 12, 4, 1, 31, 80, 56, 24, 2, 1, 63, 242, 240, 124, 24, 6, 1, 127, 728, 992, 624, 182, 48, 4, 1, 255, 2186, 4032, 3124, 1200, 342, 48, 6, 1, 511, 6560, 16256, 15624, 7502, 2400, 448, 72, 4, 1, 1023, 19682
Offset: 1

Views

Author

N. J. A. Sloane, Jan 28 2001

Keywords

Examples

			Array begins:
1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10, 4, ...
1, 3, 8, 12, 24, 24, 48, 48, 72, 72, ...
1, 7, 26, 56, 124, 182, 342, 448, 702, ...
1, 15, 80, 240, 624, 1200, 2400, 3840, ...
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 199, #3.
  • R. Sivaramakrishnan, The many facets of Euler's totient. II. Generalizations and analogues, Nieuw Arch. Wisk. (4) 8 (1990), no. 2, 169-187

Crossrefs

See A059379 and A059380 (triangle of values of J_k(n)), A000010 (J_1), A059376 (J_3), A059377 (J_4), A059378 (J_5). Columns give A000225, A024023, A020522, A024049, A059387, etc.
Main diagonal gives A067858.

Programs

  • Maple
    J := proc(n,k) local i,p,t1,t2; t1 := n^k; for p from 1 to n do if isprime(p) and n mod p = 0 then t1 := t1*(1-p^(-k)); fi; od; t1; end;
  • Mathematica
    JordanTotient[n_,k_:1]:=DivisorSum[n,#^k*MoebiusMu[n/#]&]/;(n>0)&&IntegerQ[n];
    A004736[n_]:=Binomial[Floor[3/2+Sqrt[2*n]],2]-n+1;
    A002260[n_]:=n-Binomial[Floor[1/2+Sqrt[2*n]],2];
    A059380[n_]:=JordanTotient[A002260[n],A004736[n]]; (* Enrique Pérez Herrero, Dec 19 2010 *)
  • PARI
    jordantot(n,k)=sumdiv(n,d,d^k*moebius(n/d));
    A002260(n)=n-binomial(floor(1/2+sqrt(2*n)),2);
    A004736(n)=binomial(floor(3/2+sqrt(2*n)),2)-n+1;
    A059380(n)=jordantot(A002260(n),A004736(n)); \\ Enrique Pérez Herrero, Jan 08 2011

A069091 Jordan function J_6(n).

Original entry on oeis.org

1, 63, 728, 4032, 15624, 45864, 117648, 258048, 530712, 984312, 1771560, 2935296, 4826808, 7411824, 11374272, 16515072, 24137568, 33434856, 47045880, 62995968, 85647744, 111608280, 148035888, 187858944, 244125000, 304088904, 386889048
Offset: 1

Views

Author

Benoit Cloitre, Apr 05 2002

Keywords

Comments

Moebius transform of n^6. - Enrique Pérez Herrero, Sep 14 2010
a(n) is divisible by 504 = (2^3)*(3^3)*7 = A006863(3) except for n = 1, 2, 3 and 7. See Lugo. - Peter Bala, Jan 13 2024

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 199, #3.

Crossrefs

Cf. A059379 and A059380 (triangle of values of J_k(n)), A000010 (J_1), A007434 (J_2), A059376 (J_3), A059377 (J_4), A059378 (J_5), A069092 - A069095 (J_7 through J_10).
Cf. A065959.
Cf. A013665.

Programs

  • Maple
    with(numtheory): seq(add(d^6 * mobius(n/d), d in divisors(n)), n = 1..100); # Peter Bala, Jan 13 2024
  • Mathematica
    JordanTotient[n_,k_:1]:=DivisorSum[n,#^k*MoebiusMu[n/# ]&]/;(n>0)&&IntegerQ[n]
    A069091[n_IntegerQ]:=JordanTotient[n,6]; (* Enrique Pérez Herrero, Sep 14 2010 *)
    f[p_, e_] := p^(6*e) - p^(6*(e-1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 12 2020 *)
  • PARI
    for(n=1,100,print1(sumdiv(n,d,d^6*moebius(n/d)),","))

Formula

a(n) = Sum_{d|n} d^6*mu(n/d).
Multiplicative with a(p^e) = p^(6e)-p^(6(e-1)).
Dirichlet generating function: zeta(s-6)/zeta(s). - Ralf Stephan, Jul 04 2013
a(n) = n^6*Product_{distinct primes p dividing n} (1-1/p^6). - Tom Edgar, Jan 09 2015
Sum_{k=1..n} a(k) ~ n^7 / (7*zeta(7)). - Vaclav Kotesovec, Feb 07 2019
From Amiram Eldar, Oct 12 2020: (Start)
Limit_{n->oo} (1/n) * Sum_{k=1..n} a(k)/k^6 = 1/zeta(7).
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + p^6/(p^6-1)^2) = 1.0175973008... (End)
O.g.f.: Sum_{n >= 1} mu(n)*A(x^n)/(1 - x^n)^7 = x + 63*x^2 + 728*x^3 + 4032*x^4 + 15624*x^5 + ..., where A(x) = x + 57*x^2 + 302*x^3 + 302*x^4 + 57*x^5 + x^6 is the 6th Eulerian polynomial. See A008292. - Peter Bala, Jan 31 2022

A069095 Jordan function J_10(n).

Original entry on oeis.org

1, 1023, 59048, 1047552, 9765624, 60406104, 282475248, 1072693248, 3486725352, 9990233352, 25937424600, 61855850496, 137858491848, 288972178704, 576640565952, 1098437885952, 2015993900448, 3566920035096, 6131066257800
Offset: 1

Views

Author

Benoit Cloitre, Apr 05 2002

Keywords

Comments

a(n) is divisible by 264 = (2^3)*3*11 = A006863(5), except for n = 1, 2, 3 or 11. See Lugo. - Peter Bala, Jan 13 2024

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 199, #3.

Crossrefs

Cf. A059379 and A059380 (triangle of values of J_k(n)), A000010 (J_1), A007434 (J-2), A059376 (J_3), A059377 (J_4), A059378 (J_5), A069091 - A069094 (J_6 through J_9).
Cf. A013669.

Programs

  • Maple
    f:= n -> n^10*mul(1-1/p^10, p=numtheory:-factorset(n)):
    map(f, [$1..30]); # Robert Israel, Jan 09 2015
  • Mathematica
    JordanJ[n_, k_] := DivisorSum[n, #^k*MoebiusMu[n/#] &]; f[n_] := JordanJ[n, 10]; Array[f, 21]
    f[p_, e_] := p^(10*e) - p^(10*(e-1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 12 2020 *)
  • PARI
    a(n) = sumdiv(n,d,d^10*moebius(n/d));

Formula

a(n) = Sum_{d|n} d^10*mu(n/d).
Multiplicative with a(p^e) = p^(10e)-p^(10(e-1)).
Dirichlet generating function: zeta(s-10)/zeta(s). - Ralf Stephan, Jul 04 2013
a(n) = n^10*Product_{distinct primes p dividing n} (1-1/p^10). - Tom Edgar, Jan 09 2015
Sum_{k=1..n} a(k) ~ n^11 / (11*zeta(11)). - Vaclav Kotesovec, Feb 07 2019
From Amiram Eldar, Oct 12 2020: (Start)
lim_{n->oo} (1/n) * Sum_{k=1..n} a(k)/k^10 = 1/zeta(11).
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + p^10/(p^10-1)^2) = 1.0009955309... (End)
Showing 1-10 of 22 results. Next