cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A119771 Product of n^2 and n-th tetrahedral number: a(n) = n^3*(n+1)*(n+2)/6.

Original entry on oeis.org

0, 1, 16, 90, 320, 875, 2016, 4116, 7680, 13365, 22000, 34606, 52416, 76895, 109760, 153000, 208896, 280041, 369360, 480130, 616000, 781011, 979616, 1216700, 1497600, 1828125, 2214576, 2663766, 3183040, 3780295, 4464000, 5243216, 6127616, 7127505, 8253840
Offset: 0

Views

Author

Brandon Ang (xyz1236(AT)verizon.net), Jun 28 2006

Keywords

Comments

If n is divisible by 10, then a(n) is divisible by 1000.

Examples

			a(25) = n^3*(n+1)*(n+2)/6 = 25^3*(25+1)*(25+2)/6 = 15625*26*27/6 = 15625*13*9 = 1828125.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := n^3*(n+1)*(n+2)/6; Array[a, 35, 0] (* Amiram Eldar, Feb 13 2023 *)

Formula

From Alois P. Heinz, Feb 10 2023: (Start)
a(n) = Sum_{k=0..n} k^2 * A061579(n,k).
G.f.: x*(x+1)*(9*x+1)/(x-1)^6. (End)
From Amiram Eldar, Feb 13 2023: (Start)
Sum_{n>=1} 1/a(n) = 39/8 - 3*Pi^2/4 + 3*zeta(3).
Sum_{n>=1} (-1)^(n+1)/a(n) = 12*log(2) - 51/8 - 3*Pi^2/8 + 9*zeta(3)/4. (End)
E.g.f.: exp(x)*x*(6 + 42*x + 45*x^2 + 13*x^3 + x^4)/6. - Stefano Spezia, Aug 31 2025