cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A119811 Numerators of the convergents to the continued fraction for the constant A119809 defined by binary sums involving Beatty sequences: c = Sum_{n>=1} 1/2^A049472(n) = Sum_{n>=1} A001951(n)/2^n.

Original entry on oeis.org

2, 7, 72, 9511, 1246930216, 2742028548141904733479, 1737967067447512977484869808775151193351704374584616
Offset: 1

Views

Author

Paul D. Hanna, May 26 2006

Keywords

Comments

The number of digits in these numerators are (beginning at n=1): [1,1,2,4,10,22,52,124,297,717,1729,4173,10074,24319,58709,141735,..].

Examples

			c = 2.32258852258806773012144068278798408011950250800432925665718...
Convergents begin:
[2/1, 7/3, 72/31, 9511/4095, 1246930216/536870911,...]
where the denominators of the convergents equal [2^A000129(n-1)-1]:
[1,3,31,4095,536870911,1180591620717411303423,...],
and A000129 is the Pell numbers.
		

Crossrefs

Cf. A119809 (constant), A119811 (continued fraction), A000129; A119812 (dual constant).

Programs

  • PARI
    {a(n)=local(M=contfracpnqn(vector(n,k,if(k==1,2, 2^round(((1+sqrt(2))^(k-1)+(1-sqrt(2))^(k-1))/2) +2^round(((1+sqrt(2))^(k-2)-(1-sqrt(2))^(k-2))/(2*sqrt(2))))))); return(M[1,1])}