A119814 Numerators of the convergents to the continued fraction for the constant A119812 defined by binary sums involving Beatty sequences: c = Sum_{n>=1} A049472(n)/2^n = Sum_{n>=1} 1/2^A001951(n).
0, 1, 6, 109, 112494, 1887350536045, 543991754934632523092182415214, 758213844806172103575972149363453352380811718063209070444420739586832237
Offset: 1
Examples
c = 0.858267656461002055792260308433375148664905190083506778667684867.. Convergents begin: [0/1, 1/1, 6/7, 109/127, 112494/131071, 1887350536045/2199023255551,..] where the denominators of the convergents equal [2^A001333(n-1)-1]: [1,1,7,127,131071,2199023255551,633825300114114700748351602687,...] and A001333 is numerators of continued fraction convergents to sqrt(2).
Programs
-
PARI
{a(n)=local(M=contfracpnqn(vector(n,k,if(k==1,0,if(k==2,1, 4^round(((1+sqrt(2))^(k-2)+(1-sqrt(2))^(k-2))/(2*sqrt(2))) +if(k==3,2,2^round(((1+sqrt(2))^(k-3)-(1-sqrt(2))^(k-3))/2))))))); return(M[1,1])}
Comments