cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A119849 Nonzero values of A119842, in order of appearance.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 6, 1, 2, 1, 1, 1, 14, 1, 1, 1, 1, 1, 1, 1, 1, 22, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 14, 1, 1, 1, 1, 1, 2, 1, 252, 1, 1, 1, 5, 1, 2
Offset: 1

Views

Author

Antti Karttunen, Jun 04 2006

Keywords

Crossrefs

a(n) = A119842(A119848(n)).

Programs

  • Mathematica
    b[s_, t_] := b[s, t] = If[Length[s] < 1, 1, Sum[If[Mod[PrimeOmega[x], 2] == 1 - t && Length[Select[s, Mod[#, x] == 0 &]] == 1, b[s~Complement~{x}, 1 - t], 0], {x, s}]]; a[n_] := a[n] = Module[{l, m}, l = Sort[ FactorInteger[n], #1[[2]] > #2[[2]] &]; m = Product[Prime[i]^l[[i]][[2]], {i, 1, Length[l]}]; b[Divisors[m][[2 ;; -2]], Mod[PrimeOmega[m], 2]]]; Reap[For[ k = 1, k < 200, k++, If[a[k] > 0, Print[k, " ", a[k]]; Sow[a[k]]]]][[2, 1]] (* Jean-François Alcover, Mar 03 2016, after Alois P. Heinz *)