A119855 Number of equicolorable rooted trees on 2n nodes.
1, 2, 9, 44, 249, 1506, 9687, 64803, 447666, 3169566, 22897260, 168168164, 1252391041, 9437809359, 71850420813, 551876468717, 4272100488830, 33299732401378, 261165251593743, 2059638535690473, 16324255856903830, 129969379170062142, 1039056925387672998
Offset: 1
Keywords
References
- N. Pippenger, Enumeration of equicolorable trees, SIAM J. Discrete Math., 14 (2001), 93-115.
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..100
Programs
-
PARI
\\ R is b.g.f of rooted trees x nodes, y in one part R(n)={my(A=O(x)); for(j=1, 2*n, A = if(j%2,1,y)*x*exp(sum(i=1, j, 1/i * subst(subst(A + x * O(x^(j\i)), x, x^i), y, y^i)))); A}; seq(n)={my(A=Pol(R(n))); my(r(x,y)=substvec(A, ['x,'y], [x,y/x])); Vec(polcoeff(r(x, y/x), 0) + O(y*y^n))} \\ Andrew Howroyd, May 23 2018
Extensions
Terms a(8) and beyond from Andrew Howroyd, May 21 2018
Comments