cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A119874 Sizes of successive clusters in f.c.c. lattice centered at an octahedral hole.

Original entry on oeis.org

6, 14, 38, 38, 68, 92, 116, 116, 164, 188, 236, 236, 266, 298, 370, 370, 418, 466, 490, 490, 586, 610, 682, 682, 736, 784, 856, 856, 904, 976, 1048, 1048, 1144, 1168, 1264, 1264, 1312, 1368, 1464, 1464, 1566, 1638, 1686, 1686, 1830, 1878, 1926, 1926, 1974
Offset: 0

Views

Author

Hugo Pfoertner, Jun 05 2006

Keywords

References

  • N. J. A. Sloane and B. K. Teo, Theta series and magic numbers for close-packed spherical clusters, J. Chem. Phys. 83 (1985) 6520-6534.

Crossrefs

Cf. A005887.
Cf. A119869, Properties of Waterman polyhedra of void center type: A119875 [vertices], A119876 [faces], A119877 [edges], A119878 [volume].

Programs

  • Maple
    maxd:=20001: read format: temp0:=trunc(evalf(sqrt(maxd)))+2: a:=0: for i from -temp0 to temp0 do a:=a+q^( (i+1/2)^2): od: th2:=series(a,q,maxd): a:=0: for i from -temp0 to temp0 do a:=a+q^(i^2): od: th3:=series(a,q,maxd): th4:=series(subs(q=-q,th3),q,maxd):
    t1:=series((th3^3-th4^3)/(2*q),q,maxd): t1:=series(subs(q=sqrt(q),t1),q,floor(maxd/2)): t2:=seriestolist(t1): t4:=0; for n from 1 to nops(t2) do t4:=t4+t2[n]; lprint(n-1, t4); od: # N. J. A. Sloane, Aug 09 2006

Formula

Partial sums of A005887, which has an explicit generating function.

Extensions

Edited by N. J. A. Sloane, Aug 09 2006