A119916 Number of runs of 0's of odd length in all ternary words of length n.
0, 1, 4, 17, 64, 233, 820, 2825, 9568, 31985, 105796, 346913, 1129312, 3653657, 11758132, 37665881, 120172096, 382039649, 1210689028, 3825777329, 12058462720, 37918780361, 118986517684, 372650082857, 1165021837984
Offset: 0
Examples
a(2)=4 because in the nine ternary words of length 2, namely, 00, (0)1, (0)2, 1(0), 11, 12, 2(0), 21, 22, we have altogether 4 runs of 0's of odd length (shown between parentheses).
Links
- Index entries for linear recurrences with constant coefficients, signature (5,-3,-9).
Crossrefs
Cf. A119914.
Programs
-
Maple
g:=z*(1-z)/(1-3*z)^2/(1+z): gser:=series(g,z=0,35): seq(coeff(gser,z,n),n=0..28);
-
Mathematica
LinearRecurrence[{5,-3,-9},{0,1,4},30] (* Harvey P. Dale, Feb 18 2016 *)
Formula
G.f. = z(1-z)/[(1+z)(1-3z)^2].
a(n) = ((-1)^(n-1)+(3+4*n)*3^(n-1))/8. - Johannes W. Meijer, Aug 01 2010
Comments