A119963 Triangle T(n,k), 0 <= k <= n, read by rows, with T(2n,2k) = T(2n+1,2k) = T(2n+1,2k+1) = T(2n+2,2k+1) = binomial(n,k).
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 3, 2, 3, 1, 1, 1, 1, 3, 3, 3, 3, 1, 1, 1, 1, 4, 3, 6, 3, 4, 1, 1, 1, 1, 4, 4, 6, 6, 4, 4, 1, 1, 1, 1, 5, 4, 10, 6, 10, 4, 5, 1, 1, 1, 1, 5, 5, 10, 10, 10, 10, 5, 5, 1, 1, 1, 1, 6, 5, 15, 10, 20, 10, 15, 5, 6, 1, 1, 1, 1, 6, 6, 15, 15, 20, 20, 15, 15, 6, 6, 1, 1, 1, 1, 7, 6, 21, 15, 35, 20, 35, 15, 21, 6, 7, 1, 1
Offset: 0
Examples
Triangle begins (with rows for n >= 0 and columns for k >= 0) as follows: 1; 1, 1; 1, 1, 1; 1, 1, 1, 1; 1, 1, 2, 1, 1; 1, 1, 2, 2, 1, 1; 1, 1, 3, 2, 3, 1, 1; 1, 1, 3, 3, 3, 3, 1, 1; 1, 1, 4, 3, 6, 3, 4, 1, 1; 1, 1, 4, 4, 6, 6, 4, 4, 1, 1; ...
References
- John P. McSorley, Counting k-compositions of n with palindromic and related structures, preprint, 2010. [From John P. McSorley, Aug 24 2010]
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1274
- P. Hadjicostas and L. Zhang, Sommerville's symmetrical cyclic compositions of a positive integer with parts avoiding multiples of an integer, Fibonacci Quarterly 55 (2017), 54-73.
- John P. McSorley and Alan H. Schoen, Rhombic tilings of (n,k)-Ovals, (n, k, lambda)-Cyclic Difference Sets, and Related Topics, Discrete Math., 313 (2013), 129-154. - From _N. J. A. Sloane_, Nov 26 2012
- D. M. Y. Sommerville, On certain periodic properties of cyclic compositions of numbers, Proc. London Math. Soc. S2-7(1) (1909), 263-313.
Crossrefs
The row sums of the T(n,k) triangle give sequence A029744 whose terms are 1 more than the terms of sequence A052955 (row sums of RE(n,k) triangle). See sequence A029744 where there is a reference to necklaces relevant to the combinatorial interpretation and the McSorley and McSorley/Schoen papers given here. - John P. McSorley, Aug 31 2010
Programs
-
Mathematica
Table[Binomial[Floor[(n - Boole[OddQ@ k])/2], Floor[k/2]], {n, 0, 10}, {k, 0, n}] (* Michael De Vlieger, Oct 11 2017, after PARI by Andrew Howroyd *)
-
PARI
T(n,k) = binomial((n-k%2)\2, k\2); \\ Andrew Howroyd, Oct 08 2017
Formula
G.f.: Sum_{n,k >= 1} RE(n,k)*x^n*y^k = (1+x*y-x^2)*x*y/((1-x)*(1-x^2-x^2*y^2)). - Petros Hadjicostas, Oct 12 2017
G.f.: Sum_{n,k >= 0} T(n,k)*x^n*y^k = (1+x*y)*(1+x)/(1-x^2-x^2*y^2) as above, but adding 1/(1-x) to include n,k = 0 terms. - Paul Sampson, Nov 22 2017
T(n, k) = binomial(floor(n/2) - (k mod 2) * (1 - (n mod 2)), floor(k/2)) for 0 <= k <= n. - Petros Hadjicostas, May 29 2019
Extensions
Corrected by Philippe Deléham, Aug 20 2010
Comments