cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A120010 G.f.: A(x) = (1-sqrt(1-4*x))/2 o x/(1-x) o (x-x^2), a composition of functions involving the Catalan function and its inverse.

Original entry on oeis.org

1, 1, 1, 2, 6, 18, 53, 158, 481, 1491, 4688, 14913, 47913, 155261, 506881, 1665643, 5504988, 18287338, 61027991, 204499397, 687808931, 2321177071, 7857504876, 26673769002, 90783820081, 309720079813, 1058984020333, 3628267267358
Offset: 1

Views

Author

Paul D. Hanna, Jun 03 2006

Keywords

Comments

The n-th iteration of g.f. A(x) is: (1-sqrt(1-4*x))/2 o x/(1-n*x) o (x-x^2) = (1 - sqrt(1 - 4*(x-x^2)/(1-n*x+n*x^2) ))/2. See A120009 for the transpose of the composition of the same functions.
Row sums of A155839. [Paul Barry, Jan 28 2009]

Examples

			G.f.: A(x) = x + x^2 + x^3 + 2*x^4 + 6*x^5 + 18*x^6 + 53*x^7 + 158*x^8 +...
		

Crossrefs

Cf. A120009 (composition transpose), A000108 (Catalan).

Programs

  • Mathematica
    Rest[CoefficientList[Series[(1-Sqrt[1-4*(x-x^2)/(1-x+x^2)])/2, {x, 0, 20}], x]] (* Vaclav Kotesovec, Feb 13 2014 *)
  • PARI
    {a(n)=polcoeff((1 - sqrt(1 - 4*(x-x^2)/(1-x+x^2+x*O(x^n)) ))/2,n)}
    for(n=1,35,print1(a(n),", "))

Formula

G.f.: A(x) = (1 - sqrt(1 - 4*(x-x^2)/(1-x+x^2) ))/2.
a(n)=sum{k=0..n, sum{j=0..n, (-1)^(n-j)*C(j+1,n-j)*C(j,k)*if(k<=j, A000108(j-k),0)}}. [offset 0]. [Paul Barry, Jan 28 2009]
Conjecture: n*a(n) +2*(4-3*n)*a(n-1) +(11*n-26)*a(n-2) +10*(3-n)*a(n-3) +5*(n-4)*a(n-4)= 0. - R. J. Mathar, Nov 14 2011
a(n) ~ sqrt(5*sqrt(5)-5) * (5+sqrt(5))^n / (sqrt(Pi) * n^(3/2) * 2^(n+7/2)). - Vaclav Kotesovec, Feb 13 2014
Equivalently, a(n) ~ 5^((n+1)/2) * phi^(n - 1/2) / (8 * sqrt(Pi) * n^(3/2)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Dec 08 2021