A120010 G.f.: A(x) = (1-sqrt(1-4*x))/2 o x/(1-x) o (x-x^2), a composition of functions involving the Catalan function and its inverse.
1, 1, 1, 2, 6, 18, 53, 158, 481, 1491, 4688, 14913, 47913, 155261, 506881, 1665643, 5504988, 18287338, 61027991, 204499397, 687808931, 2321177071, 7857504876, 26673769002, 90783820081, 309720079813, 1058984020333, 3628267267358
Offset: 1
Keywords
Examples
G.f.: A(x) = x + x^2 + x^3 + 2*x^4 + 6*x^5 + 18*x^6 + 53*x^7 + 158*x^8 +...
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..200
- S. B. Ekhad and M. Yang, Proofs of Linear Recurrences of Coefficients of Certain Algebraic Formal Power Series Conjectured in the On-Line Encyclopedia Of Integer Sequences, (2017)
Programs
-
Mathematica
Rest[CoefficientList[Series[(1-Sqrt[1-4*(x-x^2)/(1-x+x^2)])/2, {x, 0, 20}], x]] (* Vaclav Kotesovec, Feb 13 2014 *)
-
PARI
{a(n)=polcoeff((1 - sqrt(1 - 4*(x-x^2)/(1-x+x^2+x*O(x^n)) ))/2,n)} for(n=1,35,print1(a(n),", "))
Formula
G.f.: A(x) = (1 - sqrt(1 - 4*(x-x^2)/(1-x+x^2) ))/2.
a(n)=sum{k=0..n, sum{j=0..n, (-1)^(n-j)*C(j+1,n-j)*C(j,k)*if(k<=j, A000108(j-k),0)}}. [offset 0]. [Paul Barry, Jan 28 2009]
Conjecture: n*a(n) +2*(4-3*n)*a(n-1) +(11*n-26)*a(n-2) +10*(3-n)*a(n-3) +5*(n-4)*a(n-4)= 0. - R. J. Mathar, Nov 14 2011
a(n) ~ sqrt(5*sqrt(5)-5) * (5+sqrt(5))^n / (sqrt(Pi) * n^(3/2) * 2^(n+7/2)). - Vaclav Kotesovec, Feb 13 2014
Equivalently, a(n) ~ 5^((n+1)/2) * phi^(n - 1/2) / (8 * sqrt(Pi) * n^(3/2)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Dec 08 2021
Comments