cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A120020 Coefficients of x^n in the n-th iteration of the g.f. of A120010: a(n) = [x^n] { (1-sqrt(1-4*x))/2 o x/(1-n*x) o (x-x^2) } for n>=1.

Original entry on oeis.org

1, 2, 9, 68, 710, 9348, 148085, 2740672, 58033953, 1383923040, 36705564368, 1071911496576, 34179790156473, 1181725089179936, 44035415728886145, 1759481180119564288, 75042973200676887772, 3402984761691650083008
Offset: 1

Views

Author

Paul D. Hanna, Jun 14 2006

Keywords

Comments

Main diagonal of A120019, the table of self-compositions of A120010.
For n>=1, n divides a(n): a(n)/n = A120022(n).

Examples

			Successive iterations of F(x), the g.f. of A120010, begin:
F(x) = (1)x + x^2 + x^3 + 2x^4 + 6x^5 + 18x^6 + 53x^7 + 158x^8 +...
F(F(x)) = x + (2)x^2 + 4x^3 + 10x^4 + 32x^5 + 116x^6 + 440x^7 +...
F(F(F(x))) = x + 3x^2 + (9)x^3 + 30x^4 + 114x^5 + 480x^6 + 2157x^7 +...
F(F(F(F(x)))) = x + 4x^2 + 16x^3 + (68)x^4 + 312x^5 + 1536x^6 +...
F(F(F(F(F(x))))) = x + 5x^2 + 25x^3 + 130x^4 + (710)x^5 + 4070x^6 +...
F(F(F(F(F(F(x)))))) = x + 6x^2 + 36x^3 + 222x^4 + 1416x^5 + (9348)x^6+..
		

Crossrefs

Programs

  • PARI
    {a(n)=sum(j=1, n, binomial(2*n-2*j, n-j)/(n-j+1)* sum(i=1, j,(-1)^(j-i)*binomial(n-j+i, j-i)*binomial(n-j+i-1, i-1)*n^(i-1)))}
    for(n=1,25,print1(a(n),", "))

Formula

a(n) = Sum_{j=1..n} Catalan(n-j) * [ Sum_{i=1..j} (-1)^(j-i) * n^(i-1) * C(n-j+i, j-i) * C(n-j+i-1, i-1) ];
a(n) = Sum_{j=0..n-1} n^j * [ Sum_{i=j..n-1} (-1)^(i-j) * Catalan(n-i-1) * C(n-i+j, i-j) * C(n-i+j-1, j) ], where Catalan(n) = A000108(n) = C(2n, n)/(n+1).

A120019 Square table, read by antidiagonals, of self-compositions of A120010.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 4, 2, 1, 4, 9, 10, 6, 1, 5, 16, 30, 32, 18, 1, 6, 25, 68, 114, 116, 53, 1, 7, 36, 130, 312, 480, 440, 158, 1, 8, 49, 222, 710, 1536, 2157, 1708, 481, 1, 9, 64, 350, 1416, 4070, 8000, 10092, 6760, 1491, 1, 10, 81, 520, 2562, 9348, 24365, 43472, 48525
Offset: 1

Views

Author

Paul D. Hanna, Jun 14 2006

Keywords

Comments

The g.f. of row n is the composition: (1-sqrt(1-4*x))/2 o x/(1-nx) o (x-x^2).

Examples

			Square table begins:
1, 1, 1, 2, 6, 18, 53, 158, 481, 1491, ...
1, 2, 4, 10, 32, 116, 440, 1708, 6760, 27232, ...
1, 3, 9, 30, 114, 480, 2157, 10092, 48525, 238143, ...
1, 4, 16, 68, 312, 1536, 8000, 43472, 243808, 1400448, ...
1, 5, 25, 130, 710, 4070, 24365, 151330, 968785, 6355795, ...
1, 6, 36, 222, 1416, 9348, 63768, 448188, 3234216, 23875296, ...
1, 7, 49, 350, 2562, 19236, 148085, 1167488, 9409645, 77367087, ...
1, 8, 64, 520, 4304, 36320, 312512, 2740672, 24476800, 222358528, ...
1, 9, 81, 738, 6822, 64026, 610245, 5906502, 58033953, 578488563, ...
1, 10, 100, 1010, 10320, 106740, 1117880, 11855660, 127313320, ...
Successive self-compositions of F(x), the g.f. of A120010, begin:
F(x) = x + x^2 + x^3 + 2x^4 + 6x^5 + 18x^6 + 53x^7 + 158x^8 +...
F(F(x)) = x + 2x^2 + 4x^3 + 10x^4 + 32x^5 + 116x^6 + 440x^7 +...
F(F(F(x))) = x + 3x^2 + 9x^3 + 30x^4 + 114x^5 + 480x^6 + 2157x^7 +...
F(F(F(F(x)))) = x + 4x^2 + 16x^3 + 68x^4 + 312x^5 + 1536x^6 +...
F(F(F(F(F(x))))) = x + 5x^2 + 25x^3 + 130x^4 + 710x^5 + 4070x^6 +...
F(F(F(F(F(F(x)))))) = x + 6x^2 + 36x^3 + 222x^4 + 1416x^5 + 9348x^6 +...
		

Crossrefs

Rows: A120010, A120017, A120018; Diagonals: A120020, A120021. Variant: A120013.

Programs

  • PARI
    {T(n,k)=sum(j=1, k, binomial(2*k-2*j, k-j)/(k-j+1)* sum(i=1, j,(-1)^(j-i)*binomial(k-j+i, j-i)*binomial(k-j+i-1, i-1)*n^(i-1)))}

Formula

T(n, k) = Sum_{j=1..k}Catalan(k-j)*[Sum_{i=1..j}(-1)^(j-i)*n^(i-1)*C(k-j+i, j-i)*C(k-j+i-1, i-1)]; Also, T(n, k) = Sum_{j=0..k-1}n^j*[Sum_{i=j..k-1}(-1)^(i-j)*Catalan(k-i-1)*C(k-i+j, i-j)*C(k-i+j-1, j)]; where Catalan(n) = A000108(n) = C(2n, n)/(n+1).

A120018 The third self-composition of A120010; g.f.: A(x) = G(G(G(x))), where G(x) = g.f. of A120010.

Original entry on oeis.org

1, 3, 9, 30, 114, 480, 2157, 10092, 48525, 238143, 1187952, 6006171, 30710553, 158535975, 825143145, 4325320191, 22814398392, 120999555588, 644878190175, 3451975941243, 18550877091063, 100047282676491, 541314936448764
Offset: 1

Views

Author

Paul D. Hanna, Jun 14 2006

Keywords

Comments

Row 3 of A120019, the square table of self-compositions of A120010.

Examples

			A(x) = x + 3*x^2 + 9*x^3 + 30*x^4 + 114*x^5 + 480*x^6 + 2157*x^7 +...
G(x) = x + x^2 + x^3 + 2*x^4 + 6*x^5 + 18*x^6 + 53*x^7 + 158*x^8 +...
where G(x) is the g.f. of A120010 and G(G(G(x))) = A(x).
		

Crossrefs

Cf. A120010, A120017 (2nd self-composition), A120019.

Programs

  • Mathematica
    CoefficientList[Series[(1 - Sqrt[1 - 4 x (1-x) / (1 -3 x + 3 x^2)]) / x / 2,  {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 24 2012 *)
  • PARI
    {a(n)=polcoeff((1 - sqrt(1 - 4*x*(1-x)/(1-3*x+3*x^2+x*O(x^n)) ))/2, n)}

Formula

G.f.: A(x) = (1 - sqrt(1 - 4*x*(1-x)/(1-3*x+3*x^2) ))/2.
Recurrence: n*a(n) = 2*(5*n-6)*a(n-1) - (31*n-66)*a(n-2) + 42*(n-3)*a(n-3) - 21*(n-4)*a(n-4). - Vaclav Kotesovec, Oct 24 2012
a(n) ~ sqrt(14*sqrt(21)-42)*((7+sqrt(21))/2)^n/(16*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 24 2012

Extensions

Typo in Mma program fixed by Vincenzo Librandi, May 22 2013

A120021 Coefficients of x^n in the (n+1)-th self-composition of the g.f. of A120010: a(n) = [x^n] { (1-sqrt(1-4*x))/2 o x/(1-(n+1)*x) o (x-x^2) } for n>=1.

Original entry on oeis.org

1, 3, 16, 130, 1416, 19236, 312512, 5906502, 127313320, 3082645951, 82848394752, 2447576485341, 78846484722208, 2750891289611235, 103344880800464896, 4159577854374314795, 178587276548655542112, 8147334149686335230068
Offset: 1

Views

Author

Paul D. Hanna, Jun 14 2006

Keywords

Comments

Secondary diagonal of A120019, the table of self-compositions of A120010.

Examples

			Successive self-compositions of F(x), the g.f. of A120010, begin:
F(x) = x + x^2 + x^3 + 2x^4 + 6x^5 + 18x^6 + 53x^7 + 158x^8 +...
F(F(x)) = (1)x + 2x^2 + 4x^3 + 10x^4 + 32x^5 + 116x^6 + 440x^7 +...
F(F(F(x))) = x + (3)x^2 + 9x^3 + 30x^4 + 114x^5 + 480x^6 + 2157x^7 +...
F(F(F(F(x)))) = x + 4x^2 + (16)x^3 + 68x^4 + 312x^5 + 1536x^6 +...
F(F(F(F(F(x))))) = x + 5x^2 + 25x^3 + (130)x^4 + 710x^5 + 4070x^6 +...
F(F(F(F(F(F(x)))))) = x + 6x^2 + 36x^3 + 222x^4 + (1416)x^5 + 9348x^6+..
		

Crossrefs

Programs

  • PARI
    a(n)=polcoeff((1-sqrt(1-4*x*(1-x)/(1-(n+1)*x*(1-x)+x*O(x^n))))/2, n, x)
    
  • PARI
    /* Alternative Formula: */ a(n)=sum(j=1, n, binomial(2*n-2*j, n-j)/(n-j+1)*sum(i=1, j,(-1)^(j-i)*(n+1)^(i-1)*binomial(n-j+i, j-i)*binomial(n-j+i-1, i-1)))

Formula

a(n) = Sum_{j=1..n} Catalan(n-j)*[Sum_{i=1..j} (-1)^(j-i)*(n+1)^(i-1)*C(n-j+i, j-i)*C(n-j+i-1, i-1)], where Catalan(n) = A000108(n) = C(2n, n)/(n+1).

A120017 The 2nd self-composition of A120010; g.f.: A(x) = G(G(x)), where G(x) = g.f. of A120010.

Original entry on oeis.org

1, 2, 4, 10, 32, 116, 440, 1708, 6760, 27232, 111392, 461536, 1933024, 8170400, 34807232, 149304080, 644298592, 2795216576, 12184415360, 53338632256, 234393350912, 1033614750080, 4572427361536, 20285780245120, 90238113332992
Offset: 1

Views

Author

Paul D. Hanna, Jun 14 2006

Keywords

Examples

			A(x) = x + 2*x^2 + 4*x^3 + 10*x^4 + 32*x^5 + 116*x^6 + 440*x^7 +...
G(x) = x + x^2 + x^3 + 2*x^4 + 6*x^5 + 18*x^6 + 53*x^7 + 158*x^8 +...
where G(x) is the g.f. of A120010 and G(G(x)) = A(x).
		

Crossrefs

Cf. A120010, A120018 (3rd self-composition).

Programs

  • PARI
    {a(n)=polcoeff((1 - sqrt(1 - 4*x*(1-x)/(1-2*x+2*x^2+x*O(x^n)) ))/2, n)}

Formula

G.f.: A(x) = (1 - sqrt(1 - 4*x*(1-x)/(1-2*x+2*x^2) ))/2.

A120022 a(n) = A120020(n)/n = coefficient of x^n in the n-th self-composition of the g.f. of A120010, divided by n, for n>=1.

Original entry on oeis.org

1, 1, 3, 17, 142, 1558, 21155, 342584, 6448217, 138392304, 3336869488, 89325958048, 2629214627421, 84408934941424, 2935694381925743, 109967573757472768, 4414292541216287516, 189054708982869449056
Offset: 1

Views

Author

Paul D. Hanna, Jun 14 2006

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[((-1)^(j-i) n^(i-2) Binomial[2n-2j, n-j] Binomial[n+i-j, j-i] Binomial[n+i-j-1, i-1])/(n-j+1), {j, 1, n}, {i, 1, j}]; Array[a, 18] (* Jean-François Alcover, Nov 14 2016 *)
  • PARI
    a(n)=polcoeff((1-sqrt(1-4*x*(1-x)/(1-(n+1)*x*(1-x)+x*O(x^n))))/2, n)/n
    
  • PARI
    /* Alternate Formula: */ a(n)=sum(j=1, n, binomial(2*n-2*j, n-j)/(n-j+1)* sum(i=1, j,(-1)^(j-i)*binomial(n-j+i, j-i)*binomial(n-j+i-1, i-1)*n^(i-2)))

A120009 G.f.: A(x) = (x-x^2) o x/(1-x) o (1-sqrt(1-4*x))/2, a composition of functions involving the Catalan function and its inverse.

Original entry on oeis.org

1, 1, 1, 0, -6, -33, -143, -572, -2210, -8398, -31654, -118864, -445740, -1671525, -6273135, -23571780, -88704330, -334347090, -1262330850, -4773905760, -18083762580, -68611922730, -260725306374, -992233959480, -3781513867796, -14431491699548, -55147299002348
Offset: 1

Views

Author

Paul D. Hanna, Jun 03 2006

Keywords

Comments

The n-th self-composition of A(x) is: (x-x^2) o x/(1-n*x) o (1-sqrt(1-4*x))/2. See A120010 for the transpose of the composition of the same functions.

Examples

			A(x) = x + x^2 + x^3 - 6*x^5 - 33*x^6 - 143*x^7 - 572*x^8 - 2210*x^9 + ...
A(x) = x*C(x)^2 - x^2*C(x)^4 where C(x) is Catalan function so that:
x*C(x)^2 = x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 132*x^6 + 429*x^7 + ...
x^2*C(x)^4 = x^2 + 4*x^3 + 14*x^4 + 48*x^5 + 165*x^6 + 572*x^7 + ...
		

Crossrefs

Cf. A120010 (composition transpose), A000108 (Catalan), A000245.
Cf. A003517 (|a(n+1)|-|a(n)|). - Olivier Gérard, Oct 11 2012

Programs

  • Magma
    [3*Catalan(n) - Catalan(n+1): n in [1..30]]; // Vincenzo Librandi, Jan 02 2025
  • Mathematica
    f[n_]:=3*CatalanNumber[n] -CatalanNumber[n+1];Array[f,30,1] (* Vincenzo Librandi, Jan 02 2025 *)
  • PARI
    a(n)=binomial(2*n,n)/(n+1)-4*binomial(2*n-1,n-2)/(n+2)
    

Formula

G.f.: A(x) = ((1-3*x)*sqrt(1-4*x) - (1-x)*(1-4*x))/(2*x^2) = x*C(x)^2 - x^2*C(x)^4 where C(x) is the Catalan function (A000108).
a(n) = C(2*n,n)/(n+1) - 4*C(2*n-1,n-2)/(n+2).
a(n) = 3*Catalan(n) - Catalan(n+1). - David Callan, Nov 21 2006
D-finite with recurrence: (n+2)*a(n) + (-7*n-2)*a(n-1) + 6*(2*n-3)*a(n-2) = 0. - R. J. Mathar, Jan 20 2020, corrected Feb 16 2020
From Peter Bala, Feb 02 2024: (Start)
a(n) = 3*(-1)^n*Sum_{k = 0..n} (-4)^(n-k)*binomial(n,k)*(2*k + 2)!/((k + 3)!*k!).
G.f.: x/(1 - 4*x)*c(-x/(1 - 4*x))^3, where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers A000108. (End)
E.g.f.: exp(2*x)*(2*BesselI(0, 2*x) - 3*BesselI(1, 2*x) + BesselI(2, 2*x)) - 2. - Stefano Spezia, Dec 31 2024

A155839 A ratio of two Catalan arrays.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 2, 3, 0, 1, 0, 4, 7, 6, 0, 1, 0, 8, 18, 16, 10, 0, 1, 0, 16, 45, 51, 30, 15, 0, 1, 0, 32, 110, 152, 115, 50, 21, 0, 1, 0, 64, 264, 436, 396, 225, 77, 28, 0, 1, 0, 128, 624, 1212, 1300, 876, 399, 112, 36, 0, 1
Offset: 0

Views

Author

Paul Barry, Jan 28 2009

Keywords

Examples

			Triangle begins
  1;
  0,  1;
  0,  0,   1;
  0,  1,   0,   1;
  0,  2,   3,   0,   1;
  0,  4,   7,   6,   0,  1;
  0,  8,  18,  16,  10,  0,  1;
  0, 16,  45,  51,  30, 15,  0, 1;
  0, 32, 110, 152, 115, 50, 21, 0, 1;
		

Crossrefs

Cf. A000108, A033184, A120010 (row sums), A124644.

Programs

  • Magma
    A155839:= func< n,k | (&+[(-1)^(n-j)*Binomial(j+1, n-j)*Binomial(j, k)*Catalan(j-k) : j in [k..n]]) >;
    [A155839(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 04 2021
    
  • Mathematica
    T[n_, k_] = Sum[(-1)^j*Binomial[n-j, k]*Binomial[n-j+1, j]*CatalanNumber[n-k-j], {j, 0, n-k}];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Jun 04 2021 *)
  • Sage
    def A155839(n,k): return sum( (-1)^j*binomial(n-j,k)*binomial(n-j+1,j)*catalan_number(n-k-j) for j in (0..n-k))
    flatten([[A155839(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 04 2021

Formula

T(n, k) = Sum_{j=k..n} (-1)^(n-j)*binomial(j+1, n-j)*binomial(j, k)*A000108(j-k).
Sum_{k=0..n} T(n, k) = A120010(n+1).
Equals A033184^{-1}*A124644.
Showing 1-8 of 8 results.