cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A120019 Square table, read by antidiagonals, of self-compositions of A120010.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 4, 2, 1, 4, 9, 10, 6, 1, 5, 16, 30, 32, 18, 1, 6, 25, 68, 114, 116, 53, 1, 7, 36, 130, 312, 480, 440, 158, 1, 8, 49, 222, 710, 1536, 2157, 1708, 481, 1, 9, 64, 350, 1416, 4070, 8000, 10092, 6760, 1491, 1, 10, 81, 520, 2562, 9348, 24365, 43472, 48525
Offset: 1

Views

Author

Paul D. Hanna, Jun 14 2006

Keywords

Comments

The g.f. of row n is the composition: (1-sqrt(1-4*x))/2 o x/(1-nx) o (x-x^2).

Examples

			Square table begins:
1, 1, 1, 2, 6, 18, 53, 158, 481, 1491, ...
1, 2, 4, 10, 32, 116, 440, 1708, 6760, 27232, ...
1, 3, 9, 30, 114, 480, 2157, 10092, 48525, 238143, ...
1, 4, 16, 68, 312, 1536, 8000, 43472, 243808, 1400448, ...
1, 5, 25, 130, 710, 4070, 24365, 151330, 968785, 6355795, ...
1, 6, 36, 222, 1416, 9348, 63768, 448188, 3234216, 23875296, ...
1, 7, 49, 350, 2562, 19236, 148085, 1167488, 9409645, 77367087, ...
1, 8, 64, 520, 4304, 36320, 312512, 2740672, 24476800, 222358528, ...
1, 9, 81, 738, 6822, 64026, 610245, 5906502, 58033953, 578488563, ...
1, 10, 100, 1010, 10320, 106740, 1117880, 11855660, 127313320, ...
Successive self-compositions of F(x), the g.f. of A120010, begin:
F(x) = x + x^2 + x^3 + 2x^4 + 6x^5 + 18x^6 + 53x^7 + 158x^8 +...
F(F(x)) = x + 2x^2 + 4x^3 + 10x^4 + 32x^5 + 116x^6 + 440x^7 +...
F(F(F(x))) = x + 3x^2 + 9x^3 + 30x^4 + 114x^5 + 480x^6 + 2157x^7 +...
F(F(F(F(x)))) = x + 4x^2 + 16x^3 + 68x^4 + 312x^5 + 1536x^6 +...
F(F(F(F(F(x))))) = x + 5x^2 + 25x^3 + 130x^4 + 710x^5 + 4070x^6 +...
F(F(F(F(F(F(x)))))) = x + 6x^2 + 36x^3 + 222x^4 + 1416x^5 + 9348x^6 +...
		

Crossrefs

Rows: A120010, A120017, A120018; Diagonals: A120020, A120021. Variant: A120013.

Programs

  • PARI
    {T(n,k)=sum(j=1, k, binomial(2*k-2*j, k-j)/(k-j+1)* sum(i=1, j,(-1)^(j-i)*binomial(k-j+i, j-i)*binomial(k-j+i-1, i-1)*n^(i-1)))}

Formula

T(n, k) = Sum_{j=1..k}Catalan(k-j)*[Sum_{i=1..j}(-1)^(j-i)*n^(i-1)*C(k-j+i, j-i)*C(k-j+i-1, i-1)]; Also, T(n, k) = Sum_{j=0..k-1}n^j*[Sum_{i=j..k-1}(-1)^(i-j)*Catalan(k-i-1)*C(k-i+j, i-j)*C(k-i+j-1, j)]; where Catalan(n) = A000108(n) = C(2n, n)/(n+1).

A120018 The third self-composition of A120010; g.f.: A(x) = G(G(G(x))), where G(x) = g.f. of A120010.

Original entry on oeis.org

1, 3, 9, 30, 114, 480, 2157, 10092, 48525, 238143, 1187952, 6006171, 30710553, 158535975, 825143145, 4325320191, 22814398392, 120999555588, 644878190175, 3451975941243, 18550877091063, 100047282676491, 541314936448764
Offset: 1

Views

Author

Paul D. Hanna, Jun 14 2006

Keywords

Comments

Row 3 of A120019, the square table of self-compositions of A120010.

Examples

			A(x) = x + 3*x^2 + 9*x^3 + 30*x^4 + 114*x^5 + 480*x^6 + 2157*x^7 +...
G(x) = x + x^2 + x^3 + 2*x^4 + 6*x^5 + 18*x^6 + 53*x^7 + 158*x^8 +...
where G(x) is the g.f. of A120010 and G(G(G(x))) = A(x).
		

Crossrefs

Cf. A120010, A120017 (2nd self-composition), A120019.

Programs

  • Mathematica
    CoefficientList[Series[(1 - Sqrt[1 - 4 x (1-x) / (1 -3 x + 3 x^2)]) / x / 2,  {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 24 2012 *)
  • PARI
    {a(n)=polcoeff((1 - sqrt(1 - 4*x*(1-x)/(1-3*x+3*x^2+x*O(x^n)) ))/2, n)}

Formula

G.f.: A(x) = (1 - sqrt(1 - 4*x*(1-x)/(1-3*x+3*x^2) ))/2.
Recurrence: n*a(n) = 2*(5*n-6)*a(n-1) - (31*n-66)*a(n-2) + 42*(n-3)*a(n-3) - 21*(n-4)*a(n-4). - Vaclav Kotesovec, Oct 24 2012
a(n) ~ sqrt(14*sqrt(21)-42)*((7+sqrt(21))/2)^n/(16*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 24 2012

Extensions

Typo in Mma program fixed by Vincenzo Librandi, May 22 2013
Showing 1-2 of 2 results.