A120018 The third self-composition of A120010; g.f.: A(x) = G(G(G(x))), where G(x) = g.f. of A120010.
1, 3, 9, 30, 114, 480, 2157, 10092, 48525, 238143, 1187952, 6006171, 30710553, 158535975, 825143145, 4325320191, 22814398392, 120999555588, 644878190175, 3451975941243, 18550877091063, 100047282676491, 541314936448764
Offset: 1
Keywords
Examples
A(x) = x + 3*x^2 + 9*x^3 + 30*x^4 + 114*x^5 + 480*x^6 + 2157*x^7 +... G(x) = x + x^2 + x^3 + 2*x^4 + 6*x^5 + 18*x^6 + 53*x^7 + 158*x^8 +... where G(x) is the g.f. of A120010 and G(G(G(x))) = A(x).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..300
Programs
-
Mathematica
CoefficientList[Series[(1 - Sqrt[1 - 4 x (1-x) / (1 -3 x + 3 x^2)]) / x / 2, {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 24 2012 *)
-
PARI
{a(n)=polcoeff((1 - sqrt(1 - 4*x*(1-x)/(1-3*x+3*x^2+x*O(x^n)) ))/2, n)}
Formula
G.f.: A(x) = (1 - sqrt(1 - 4*x*(1-x)/(1-3*x+3*x^2) ))/2.
Recurrence: n*a(n) = 2*(5*n-6)*a(n-1) - (31*n-66)*a(n-2) + 42*(n-3)*a(n-3) - 21*(n-4)*a(n-4). - Vaclav Kotesovec, Oct 24 2012
a(n) ~ sqrt(14*sqrt(21)-42)*((7+sqrt(21))/2)^n/(16*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 24 2012
Extensions
Typo in Mma program fixed by Vincenzo Librandi, May 22 2013
Comments