cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A120027 Triangle, generated from (3^(n-k) * 5^k) table.

Original entry on oeis.org

1, 3, 5, 9, 15, 25, 27, 45, 75, 125, 81, 135, 225, 375, 625, 243, 405, 675, 1125, 1875, 3125, 729, 1215, 2025, 3375, 5625, 9375, 15625, 2187, 3645, 6075, 10125, 16875, 28125, 46875, 78125, 6561, 10935, 18225, 30375, 50625, 84375, 140625, 234375
Offset: 0

Views

Author

Gary W. Adamson, Jun 04 2006

Keywords

Comments

Row 1 of the array (3, 15, 75, 375, ...) = A005053, (3 * 5^n), deleting the "1".

Examples

			First few rows of the array:
  1,  5,  25,  125, ...
  3, 15,  75,  375, ...
  9, 45, 225, 1125, ...
First few rows of the triangle are:
   1;
   3,  5;
   9, 15, 25;
  27, 45, 75, 125;
  ...
Example: a(17) = 675 = (3,2) in the array, = 3^3 * 5^2.
		

Crossrefs

Programs

  • Mathematica
    Table[3^(n - k)*5^k, {n, 0, 8}, {k, 0, n}] // Flatten (* Robert G. Wilson v, Jun 06 2006 *)

Formula

Antidiagonals of the (3^i * 5^j) multiplication table, as an array.
From Boris Putievskiy, Jan 09 2013: (Start)
T(n,k) = 3^(k-1)*5^(n-1) n, k >0 read by antidiagonals.
a(n) = 3^(A004736(n)-1) * 5^(A002260(n)-1), n > 0, or
a(n) = 3^(j-1) * 5^(i-1), n > 0,
where i = n - t*(t+1)/2, j = (t*t + 3*t + 4)/2 - n, t = floor((-1+sqrt(8*n-7))/2). (End)
G.f.: 1/((1 - 3*x)(1 - 5*x*y)). - Ilya Gutkovskiy, Jun 03 2017

Extensions

More terms from Robert G. Wilson v, Jun 06 2006