A120040 Number of 9-almost primes 9ap such that 2^n < 9ap <= 2^(n+1).
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 5, 8, 22, 47, 102, 232, 482, 1062, 2217, 4738, 10051, 21083, 44315, 92608, 193824, 402936, 838879, 1739794, 3605077, 7457977, 15404202, 31781036, 65481376, 134777594, 277096118, 569173839, 1168002568, 2394834166
Offset: 0
Keywords
Examples
(2^9, 2^10] there is one semiprime, namely 768. 512 was counted in the previous entry.
Crossrefs
Programs
-
Mathematica
AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]]]]]; (* Eric W. Weisstein, Feb 07 2006 *) t = Table[AlmostPrimePi[9, 2^n], {n, 0, 30}]; Rest@t - Most@t
Comments